Step |
Hyp |
Ref |
Expression |
1 |
|
olm0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
olm0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
olm0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
6 |
5
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
7 |
|
simpr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
8 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
10 |
1 3
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
12 |
1 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) ∈ 𝐵 ) |
13 |
6 7 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) ∈ 𝐵 ) |
14 |
1 4 2
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) ( le ‘ 𝐾 ) 0 ) |
15 |
6 7 11 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) ( le ‘ 𝐾 ) 0 ) |
16 |
1 4 3
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 ) |
17 |
8 16
|
sylan |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 ) |
18 |
1 4
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 0 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 0 ) |
19 |
6 11 18
|
syl2anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) 0 ) |
20 |
1 4 2
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) ) → ( ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ( le ‘ 𝐾 ) 0 ) ↔ 0 ( le ‘ 𝐾 ) ( 𝑋 ∧ 0 ) ) ) |
21 |
6 11 7 11 20
|
syl13anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 ( le ‘ 𝐾 ) 𝑋 ∧ 0 ( le ‘ 𝐾 ) 0 ) ↔ 0 ( le ‘ 𝐾 ) ( 𝑋 ∧ 0 ) ) ) |
22 |
17 19 21
|
mpbi2and |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ( le ‘ 𝐾 ) ( 𝑋 ∧ 0 ) ) |
23 |
1 4 6 13 11 15 22
|
latasymd |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) = 0 ) |