| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							olm0.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							olm0.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							olm0.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							ollat | 
							⊢ ( 𝐾  ∈  OL  →  𝐾  ∈  Lat )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  Lat )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							olop | 
							⊢ ( 𝐾  ∈  OL  →  𝐾  ∈  OP )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  OP )  | 
						
						
							| 9 | 
							
								1 3
							 | 
							op0cl | 
							⊢ ( 𝐾  ∈  OP  →   0   ∈  𝐵 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →   0   ∈  𝐵 )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							latmcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧   0   ∈  𝐵 )  →  ( 𝑋  ∧   0  )  =  (  0   ∧  𝑋 ) )  | 
						
						
							| 12 | 
							
								5 6 10 11
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∧   0  )  =  (  0   ∧  𝑋 ) )  | 
						
						
							| 13 | 
							
								1 2 3
							 | 
							olm01 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∧   0  )  =   0  )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqtr3d | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵 )  →  (  0   ∧  𝑋 )  =   0  )  |