Step |
Hyp |
Ref |
Expression |
1 |
|
olm0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
olm0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
olm0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
ollat |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
6 |
|
simpr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
7 |
|
olop |
⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) |
8 |
7
|
adantr |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
9 |
1 3
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
11 |
1 2
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) = ( 0 ∧ 𝑋 ) ) |
12 |
5 6 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) = ( 0 ∧ 𝑋 ) ) |
13 |
1 2 3
|
olm01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∧ 0 ) = 0 ) |
14 |
12 13
|
eqtr3d |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∧ 𝑋 ) = 0 ) |