Metamath Proof Explorer


Theorem olposN

Description: An ortholattice is a poset. (Contributed by NM, 16-Oct-2011) (New usage is discouraged.)

Ref Expression
Assertion olposN ( 𝐾 ∈ OL → 𝐾 ∈ Poset )

Proof

Step Hyp Ref Expression
1 olop ( 𝐾 ∈ OL → 𝐾 ∈ OP )
2 opposet ( 𝐾 ∈ OP → 𝐾 ∈ Poset )
3 1 2 syl ( 𝐾 ∈ OL → 𝐾 ∈ Poset )