Step |
Hyp |
Ref |
Expression |
1 |
|
neanior |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
2 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
3 |
|
ordge1n0 |
⊢ ( Ord 𝐴 → ( 1o ⊆ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ On → ( 1o ⊆ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
5 |
4
|
biimprd |
⊢ ( 𝐴 ∈ On → ( 𝐴 ≠ ∅ → 1o ⊆ 𝐴 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ≠ ∅ → 1o ⊆ 𝐴 ) ) |
7 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
9 |
|
omword1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) |
10 |
9
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
11 |
8 10
|
sylbird |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ≠ ∅ → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
12 |
6 11
|
anim12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 1o ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) ) ) |
13 |
|
sstr |
⊢ ( ( 1o ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) → 1o ⊆ ( 𝐴 ·o 𝐵 ) ) |
14 |
12 13
|
syl6 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → 1o ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
15 |
1 14
|
syl5bir |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) → 1o ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
16 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
17 |
|
eloni |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → Ord ( 𝐴 ·o 𝐵 ) ) |
18 |
|
ordge1n0 |
⊢ ( Ord ( 𝐴 ·o 𝐵 ) → ( 1o ⊆ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
19 |
16 17 18
|
3syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ⊆ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
20 |
15 19
|
sylibd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
21 |
20
|
necon4bd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ∅ → ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
22 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) |
23 |
|
om0r |
⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) |
24 |
22 23
|
sylan9eqr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) |
25 |
24
|
ex |
⊢ ( 𝐵 ∈ On → ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ∅ ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ∅ ) ) |
27 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o ∅ ) ) |
28 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
29 |
27 28
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) |
30 |
29
|
ex |
⊢ ( 𝐴 ∈ On → ( 𝐵 = ∅ → ( 𝐴 ·o 𝐵 ) = ∅ ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 = ∅ → ( 𝐴 ·o 𝐵 ) = ∅ ) ) |
32 |
26 31
|
jaod |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) ) |
33 |
21 32
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |