| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neanior | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ↔  ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) | 
						
							| 2 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 3 |  | ordge1n0 | ⊢ ( Ord  𝐴  →  ( 1o  ⊆  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐴  ∈  On  →  ( 1o  ⊆  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 5 | 4 | biimprd | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ≠  ∅  →  1o  ⊆  𝐴 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ≠  ∅  →  1o  ⊆  𝐴 ) ) | 
						
							| 7 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 9 |  | omword1 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  𝐵 )  →  𝐴  ⊆  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  𝐵  →  𝐴  ⊆  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 11 | 8 10 | sylbird | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ≠  ∅  →  𝐴  ⊆  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 12 | 6 11 | anim12d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( 1o  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐴  ·o  𝐵 ) ) ) ) | 
						
							| 13 |  | sstr | ⊢ ( ( 1o  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐴  ·o  𝐵 ) )  →  1o  ⊆  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 14 | 12 13 | syl6 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  1o  ⊆  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 15 | 1 14 | biimtrrid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ )  →  1o  ⊆  ( 𝐴  ·o  𝐵 ) ) ) | 
						
							| 16 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  𝐵 )  ∈  On ) | 
						
							| 17 |  | eloni | ⊢ ( ( 𝐴  ·o  𝐵 )  ∈  On  →  Ord  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 18 |  | ordge1n0 | ⊢ ( Ord  ( 𝐴  ·o  𝐵 )  →  ( 1o  ⊆  ( 𝐴  ·o  𝐵 )  ↔  ( 𝐴  ·o  𝐵 )  ≠  ∅ ) ) | 
						
							| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 1o  ⊆  ( 𝐴  ·o  𝐵 )  ↔  ( 𝐴  ·o  𝐵 )  ≠  ∅ ) ) | 
						
							| 20 | 15 19 | sylibd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ )  →  ( 𝐴  ·o  𝐵 )  ≠  ∅ ) ) | 
						
							| 21 | 20 | necon4bd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  =  ∅  →  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ( ∅  ·o  𝐵 ) ) | 
						
							| 23 |  | om0r | ⊢ ( 𝐵  ∈  On  →  ( ∅  ·o  𝐵 )  =  ∅ ) | 
						
							| 24 | 22 23 | sylan9eqr | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  =  ∅ )  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝐵  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ( 𝐴  ·o  ∅ ) ) | 
						
							| 28 |  | om0 | ⊢ ( 𝐴  ∈  On  →  ( 𝐴  ·o  ∅ )  =  ∅ ) | 
						
							| 29 | 27 28 | sylan9eqr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  =  ∅ )  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝐴  ∈  On  →  ( 𝐵  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  =  ∅  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) ) | 
						
							| 32 | 26 31 | jaod | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  =  ∅  ∨  𝐵  =  ∅ )  →  ( 𝐴  ·o  𝐵 )  =  ∅ ) ) | 
						
							| 33 | 21 32 | impbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) ) |