| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om00 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 2 | 1 | necon3abid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  ≠  ∅  ↔  ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 3 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  𝐵 )  ∈  On ) | 
						
							| 4 |  | on0eln0 | ⊢ ( ( 𝐴  ·o  𝐵 )  ∈  On  →  ( ∅  ∈  ( 𝐴  ·o  𝐵 )  ↔  ( 𝐴  ·o  𝐵 )  ≠  ∅ ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  ( 𝐴  ·o  𝐵 )  ↔  ( 𝐴  ·o  𝐵 )  ≠  ∅ ) ) | 
						
							| 6 |  | on0eln0 | ⊢ ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 7 |  | on0eln0 | ⊢ ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  ↔  𝐵  ≠  ∅ ) ) | 
						
							| 8 | 6 7 | bi2anan9 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( ∅  ∈  𝐴  ∧  ∅  ∈  𝐵 )  ↔  ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ ) ) ) | 
						
							| 9 |  | neanior | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ↔  ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) | 
						
							| 10 | 8 9 | bitrdi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( ∅  ∈  𝐴  ∧  ∅  ∈  𝐵 )  ↔  ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 11 | 2 5 10 | 3bitr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ∅  ∈  ( 𝐴  ·o  𝐵 )  ↔  ( ∅  ∈  𝐴  ∧  ∅  ∈  𝐵 ) ) ) |