Step |
Hyp |
Ref |
Expression |
1 |
|
om00 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
2 |
1
|
necon3abid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ≠ ∅ ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
3 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
4 |
|
on0eln0 |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
6 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
7 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
8 |
6 7
|
bi2anan9 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ↔ ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) ) |
9 |
|
neanior |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
10 |
8 9
|
bitrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
11 |
2 5 10
|
3bitr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) ) |