Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ∅ ·o 𝑥 ) = ( ∅ ·o ∅ ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o ∅ ) = ∅ ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∅ ·o 𝑥 ) = ( ∅ ·o 𝑦 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o 𝑦 ) = ∅ ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ∅ ·o 𝑥 ) = ( ∅ ·o suc 𝑦 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o suc 𝑦 ) = ∅ ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( ∅ ·o 𝑥 ) = ( ∅ ·o 𝐴 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o 𝐴 ) = ∅ ) ) |
9 |
|
0elon |
⊢ ∅ ∈ On |
10 |
|
om0 |
⊢ ( ∅ ∈ On → ( ∅ ·o ∅ ) = ∅ ) |
11 |
9 10
|
ax-mp |
⊢ ( ∅ ·o ∅ ) = ∅ |
12 |
|
oveq1 |
⊢ ( ( ∅ ·o 𝑦 ) = ∅ → ( ( ∅ ·o 𝑦 ) +o ∅ ) = ( ∅ +o ∅ ) ) |
13 |
|
omsuc |
⊢ ( ( ∅ ∈ On ∧ 𝑦 ∈ On ) → ( ∅ ·o suc 𝑦 ) = ( ( ∅ ·o 𝑦 ) +o ∅ ) ) |
14 |
9 13
|
mpan |
⊢ ( 𝑦 ∈ On → ( ∅ ·o suc 𝑦 ) = ( ( ∅ ·o 𝑦 ) +o ∅ ) ) |
15 |
|
oa0 |
⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) |
16 |
9 15
|
ax-mp |
⊢ ( ∅ +o ∅ ) = ∅ |
17 |
16
|
eqcomi |
⊢ ∅ = ( ∅ +o ∅ ) |
18 |
17
|
a1i |
⊢ ( 𝑦 ∈ On → ∅ = ( ∅ +o ∅ ) ) |
19 |
14 18
|
eqeq12d |
⊢ ( 𝑦 ∈ On → ( ( ∅ ·o suc 𝑦 ) = ∅ ↔ ( ( ∅ ·o 𝑦 ) +o ∅ ) = ( ∅ +o ∅ ) ) ) |
20 |
12 19
|
syl5ibr |
⊢ ( 𝑦 ∈ On → ( ( ∅ ·o 𝑦 ) = ∅ → ( ∅ ·o suc 𝑦 ) = ∅ ) ) |
21 |
|
iuneq2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ → ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ∅ ) |
22 |
|
iun0 |
⊢ ∪ 𝑦 ∈ 𝑥 ∅ = ∅ |
23 |
21 22
|
eqtrdi |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ → ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
|
omlim |
⊢ ( ( ∅ ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∅ ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) ) |
26 |
9 25
|
mpan |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ∅ ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) ) |
27 |
24 26
|
mpan |
⊢ ( Lim 𝑥 → ( ∅ ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) ) |
28 |
27
|
eqeq1d |
⊢ ( Lim 𝑥 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ∪ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ ) ) |
29 |
23 28
|
syl5ibr |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ·o 𝑦 ) = ∅ → ( ∅ ·o 𝑥 ) = ∅ ) ) |
30 |
2 4 6 8 11 20 29
|
tfinds |
⊢ ( 𝐴 ∈ On → ( ∅ ·o 𝐴 ) = ∅ ) |