Metamath Proof Explorer


Theorem om1

Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. (Contributed by NM, 29-Oct-1995)

Ref Expression
Assertion om1 ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 1 oveq2i ( 𝐴 ·o 1o ) = ( 𝐴 ·o suc ∅ )
3 peano1 ∅ ∈ ω
4 onmsuc ( ( 𝐴 ∈ On ∧ ∅ ∈ ω ) → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) )
5 3 4 mpan2 ( 𝐴 ∈ On → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) )
6 2 5 eqtrid ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) )
7 om0 ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ )
8 7 oveq1d ( 𝐴 ∈ On → ( ( 𝐴 ·o ∅ ) +o 𝐴 ) = ( ∅ +o 𝐴 ) )
9 oa0r ( 𝐴 ∈ On → ( ∅ +o 𝐴 ) = 𝐴 )
10 6 8 9 3eqtrd ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 )