Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. (Contributed by NM, 29-Oct-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | om1 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o | ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i | ⊢ ( 𝐴 ·o 1o ) = ( 𝐴 ·o suc ∅ ) |
3 | peano1 | ⊢ ∅ ∈ ω | |
4 | onmsuc | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ ω ) → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) ) | |
5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) ) |
6 | 2 5 | eqtrid | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) ) |
7 | om0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) | |
8 | 7 | oveq1d | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ·o ∅ ) +o 𝐴 ) = ( ∅ +o 𝐴 ) ) |
9 | oa0r | ⊢ ( 𝐴 ∈ On → ( ∅ +o 𝐴 ) = 𝐴 ) | |
10 | 6 8 9 | 3eqtrd | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 ) |