| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 1o  ·o  𝑥 )  =  ( 1o  ·o  ∅ ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑥  =  ∅  →  𝑥  =  ∅ ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( 1o  ·o  𝑥 )  =  𝑥  ↔  ( 1o  ·o  ∅ )  =  ∅ ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 1o  ·o  𝑥 )  =  ( 1o  ·o  𝑦 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 1o  ·o  𝑥 )  =  𝑥  ↔  ( 1o  ·o  𝑦 )  =  𝑦 ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 1o  ·o  𝑥 )  =  ( 1o  ·o  suc  𝑦 ) ) | 
						
							| 8 |  | id | ⊢ ( 𝑥  =  suc  𝑦  →  𝑥  =  suc  𝑦 ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 1o  ·o  𝑥 )  =  𝑥  ↔  ( 1o  ·o  suc  𝑦 )  =  suc  𝑦 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 1o  ·o  𝑥 )  =  ( 1o  ·o  𝐴 ) ) | 
						
							| 11 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 1o  ·o  𝑥 )  =  𝑥  ↔  ( 1o  ·o  𝐴 )  =  𝐴 ) ) | 
						
							| 13 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 14 |  | om0 | ⊢ ( 1o  ∈  On  →  ( 1o  ·o  ∅ )  =  ∅ ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 1o  ·o  ∅ )  =  ∅ | 
						
							| 16 |  | omsuc | ⊢ ( ( 1o  ∈  On  ∧  𝑦  ∈  On )  →  ( 1o  ·o  suc  𝑦 )  =  ( ( 1o  ·o  𝑦 )  +o  1o ) ) | 
						
							| 17 | 13 16 | mpan | ⊢ ( 𝑦  ∈  On  →  ( 1o  ·o  suc  𝑦 )  =  ( ( 1o  ·o  𝑦 )  +o  1o ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( ( 1o  ·o  𝑦 )  =  𝑦  →  ( ( 1o  ·o  𝑦 )  +o  1o )  =  ( 𝑦  +o  1o ) ) | 
						
							| 19 | 17 18 | sylan9eq | ⊢ ( ( 𝑦  ∈  On  ∧  ( 1o  ·o  𝑦 )  =  𝑦 )  →  ( 1o  ·o  suc  𝑦 )  =  ( 𝑦  +o  1o ) ) | 
						
							| 20 |  | oa1suc | ⊢ ( 𝑦  ∈  On  →  ( 𝑦  +o  1o )  =  suc  𝑦 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑦  ∈  On  ∧  ( 1o  ·o  𝑦 )  =  𝑦 )  →  ( 𝑦  +o  1o )  =  suc  𝑦 ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( ( 𝑦  ∈  On  ∧  ( 1o  ·o  𝑦 )  =  𝑦 )  →  ( 1o  ·o  suc  𝑦 )  =  suc  𝑦 ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝑦  ∈  On  →  ( ( 1o  ·o  𝑦 )  =  𝑦  →  ( 1o  ·o  suc  𝑦 )  =  suc  𝑦 ) ) | 
						
							| 24 |  | iuneq2 | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 1o  ·o  𝑦 )  =  𝑦  →  ∪  𝑦  ∈  𝑥 ( 1o  ·o  𝑦 )  =  ∪  𝑦  ∈  𝑥 𝑦 ) | 
						
							| 25 |  | uniiun | ⊢ ∪  𝑥  =  ∪  𝑦  ∈  𝑥 𝑦 | 
						
							| 26 | 24 25 | eqtr4di | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 1o  ·o  𝑦 )  =  𝑦  →  ∪  𝑦  ∈  𝑥 ( 1o  ·o  𝑦 )  =  ∪  𝑥 ) | 
						
							| 27 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 28 |  | omlim | ⊢ ( ( 1o  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  →  ( 1o  ·o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 1o  ·o  𝑦 ) ) | 
						
							| 29 | 13 28 | mpan | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  ( 1o  ·o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 1o  ·o  𝑦 ) ) | 
						
							| 30 | 27 29 | mpan | ⊢ ( Lim  𝑥  →  ( 1o  ·o  𝑥 )  =  ∪  𝑦  ∈  𝑥 ( 1o  ·o  𝑦 ) ) | 
						
							| 31 |  | limuni | ⊢ ( Lim  𝑥  →  𝑥  =  ∪  𝑥 ) | 
						
							| 32 | 30 31 | eqeq12d | ⊢ ( Lim  𝑥  →  ( ( 1o  ·o  𝑥 )  =  𝑥  ↔  ∪  𝑦  ∈  𝑥 ( 1o  ·o  𝑦 )  =  ∪  𝑥 ) ) | 
						
							| 33 | 26 32 | imbitrrid | ⊢ ( Lim  𝑥  →  ( ∀ 𝑦  ∈  𝑥 ( 1o  ·o  𝑦 )  =  𝑦  →  ( 1o  ·o  𝑥 )  =  𝑥 ) ) | 
						
							| 34 | 3 6 9 12 15 23 33 | tfinds | ⊢ ( 𝐴  ∈  On  →  ( 1o  ·o  𝐴 )  =  𝐴 ) |