Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 1o ·o 𝑥 ) = ( 1o ·o ∅ ) ) |
2 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o ∅ ) = ∅ ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1o ·o 𝑥 ) = ( 1o ·o 𝑦 ) ) |
5 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o 𝑦 ) = 𝑦 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 1o ·o 𝑥 ) = ( 1o ·o suc 𝑦 ) ) |
8 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o suc 𝑦 ) = suc 𝑦 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 1o ·o 𝑥 ) = ( 1o ·o 𝐴 ) ) |
11 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ( 1o ·o 𝐴 ) = 𝐴 ) ) |
13 |
|
1on |
⊢ 1o ∈ On |
14 |
|
om0 |
⊢ ( 1o ∈ On → ( 1o ·o ∅ ) = ∅ ) |
15 |
13 14
|
ax-mp |
⊢ ( 1o ·o ∅ ) = ∅ |
16 |
|
omsuc |
⊢ ( ( 1o ∈ On ∧ 𝑦 ∈ On ) → ( 1o ·o suc 𝑦 ) = ( ( 1o ·o 𝑦 ) +o 1o ) ) |
17 |
13 16
|
mpan |
⊢ ( 𝑦 ∈ On → ( 1o ·o suc 𝑦 ) = ( ( 1o ·o 𝑦 ) +o 1o ) ) |
18 |
|
oveq1 |
⊢ ( ( 1o ·o 𝑦 ) = 𝑦 → ( ( 1o ·o 𝑦 ) +o 1o ) = ( 𝑦 +o 1o ) ) |
19 |
17 18
|
sylan9eq |
⊢ ( ( 𝑦 ∈ On ∧ ( 1o ·o 𝑦 ) = 𝑦 ) → ( 1o ·o suc 𝑦 ) = ( 𝑦 +o 1o ) ) |
20 |
|
oa1suc |
⊢ ( 𝑦 ∈ On → ( 𝑦 +o 1o ) = suc 𝑦 ) |
21 |
20
|
adantr |
⊢ ( ( 𝑦 ∈ On ∧ ( 1o ·o 𝑦 ) = 𝑦 ) → ( 𝑦 +o 1o ) = suc 𝑦 ) |
22 |
19 21
|
eqtrd |
⊢ ( ( 𝑦 ∈ On ∧ ( 1o ·o 𝑦 ) = 𝑦 ) → ( 1o ·o suc 𝑦 ) = suc 𝑦 ) |
23 |
22
|
ex |
⊢ ( 𝑦 ∈ On → ( ( 1o ·o 𝑦 ) = 𝑦 → ( 1o ·o suc 𝑦 ) = suc 𝑦 ) ) |
24 |
|
iuneq2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 𝑦 ) |
25 |
|
uniiun |
⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 |
26 |
24 25
|
eqtr4di |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = ∪ 𝑥 ) |
27 |
|
vex |
⊢ 𝑥 ∈ V |
28 |
|
omlim |
⊢ ( ( 1o ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 1o ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) ) |
29 |
13 28
|
mpan |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 1o ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) ) |
30 |
27 29
|
mpan |
⊢ ( Lim 𝑥 → ( 1o ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) ) |
31 |
|
limuni |
⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) |
32 |
30 31
|
eqeq12d |
⊢ ( Lim 𝑥 → ( ( 1o ·o 𝑥 ) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = ∪ 𝑥 ) ) |
33 |
26 32
|
syl5ibr |
⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 1o ·o 𝑦 ) = 𝑦 → ( 1o ·o 𝑥 ) = 𝑥 ) ) |
34 |
3 6 9 12 15 23 33
|
tfinds |
⊢ ( 𝐴 ∈ On → ( 1o ·o 𝐴 ) = 𝐴 ) |