Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
3 |
1 2
|
om2uzlti |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
4 |
1 2
|
om2uzlti |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 ∈ 𝐴 → ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝐵 = 𝐴 → ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 = 𝐴 → ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
7 |
4 6
|
orim12d |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) → ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) → ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
9 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
10 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
11 |
|
onsseleq |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
12 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
13 |
11 12
|
bitr3d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
14 |
9 10 13
|
syl2anr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
15 |
1 2
|
om2uzuzi |
⊢ ( 𝐵 ∈ ω → ( 𝐺 ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
16 |
|
eluzelre |
⊢ ( ( 𝐺 ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
17 |
15 16
|
syl |
⊢ ( 𝐵 ∈ ω → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
18 |
1 2
|
om2uzuzi |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
19 |
|
eluzelre |
⊢ ( ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
21 |
|
leloe |
⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐴 ) ↔ ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
22 |
|
lenlt |
⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐴 ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
23 |
21 22
|
bitr3d |
⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
24 |
17 20 23
|
syl2anr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
25 |
8 14 24
|
3imtr3d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ¬ 𝐴 ∈ 𝐵 → ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
26 |
3 25
|
impcon4bid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |