| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
| 2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
| 3 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) Fn ω |
| 4 |
2
|
fneq1i |
⊢ ( 𝐺 Fn ω ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) Fn ω ) |
| 5 |
3 4
|
mpbir |
⊢ 𝐺 Fn ω |
| 6 |
|
fvelrnb |
⊢ ( 𝐺 Fn ω → ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 ) |
| 8 |
1 2
|
om2uzuzi |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 9 |
|
eleq1 |
⊢ ( ( 𝐺 ‘ 𝑧 ) = 𝑦 → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 10 |
8 9
|
syl5ibcom |
⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 11 |
10
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 12 |
7 11
|
sylbi |
⊢ ( 𝑦 ∈ ran 𝐺 → 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 13 |
|
eleq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ ran 𝐺 ↔ 𝐶 ∈ ran 𝐺 ) ) |
| 14 |
|
eleq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ ran 𝐺 ↔ 𝑦 ∈ ran 𝐺 ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑦 + 1 ) → ( 𝑧 ∈ ran 𝐺 ↔ ( 𝑦 + 1 ) ∈ ran 𝐺 ) ) |
| 16 |
1 2
|
om2uz0i |
⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
| 17 |
|
peano1 |
⊢ ∅ ∈ ω |
| 18 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ω ∧ ∅ ∈ ω ) → ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 ) |
| 19 |
5 17 18
|
mp2an |
⊢ ( 𝐺 ‘ ∅ ) ∈ ran 𝐺 |
| 20 |
16 19
|
eqeltrri |
⊢ 𝐶 ∈ ran 𝐺 |
| 21 |
1 2
|
om2uzsuci |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 22 |
|
oveq1 |
⊢ ( ( 𝐺 ‘ 𝑧 ) = 𝑦 → ( ( 𝐺 ‘ 𝑧 ) + 1 ) = ( 𝑦 + 1 ) ) |
| 23 |
21 22
|
sylan9eq |
⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝐺 ‘ suc 𝑧 ) = ( 𝑦 + 1 ) ) |
| 24 |
|
peano2 |
⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ ω ) |
| 25 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ω ∧ suc 𝑧 ∈ ω ) → ( 𝐺 ‘ suc 𝑧 ) ∈ ran 𝐺 ) |
| 26 |
5 24 25
|
sylancr |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) ∈ ran 𝐺 ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝐺 ‘ suc 𝑧 ) ∈ ran 𝐺 ) |
| 28 |
23 27
|
eqeltrrd |
⊢ ( ( 𝑧 ∈ ω ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝑦 + 1 ) ∈ ran 𝐺 ) |
| 29 |
28
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ ω ( 𝐺 ‘ 𝑧 ) = 𝑦 → ( 𝑦 + 1 ) ∈ ran 𝐺 ) |
| 30 |
7 29
|
sylbi |
⊢ ( 𝑦 ∈ ran 𝐺 → ( 𝑦 + 1 ) ∈ ran 𝐺 ) |
| 31 |
30
|
a1i |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑦 ∈ ran 𝐺 → ( 𝑦 + 1 ) ∈ ran 𝐺 ) ) |
| 32 |
13 14 15 14 20 31
|
uzind4i |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) → 𝑦 ∈ ran 𝐺 ) |
| 33 |
12 32
|
impbii |
⊢ ( 𝑦 ∈ ran 𝐺 ↔ 𝑦 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 34 |
33
|
eqriv |
⊢ ran 𝐺 = ( ℤ≥ ‘ 𝐶 ) |