| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
| 2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
| 3 |
|
suceq |
⊢ ( 𝑧 = 𝐴 → suc 𝑧 = suc 𝐴 ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝑧 = 𝐴 → ( 𝐺 ‘ suc 𝑧 ) = ( 𝐺 ‘ suc 𝐴 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐺 ‘ 𝑧 ) + 1 ) = ( ( 𝐺 ‘ 𝐴 ) + 1 ) ) |
| 7 |
4 6
|
eqeq12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ↔ ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) + 1 ) ) ) |
| 8 |
|
ovex |
⊢ ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ V |
| 9 |
|
oveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + 1 ) = ( 𝑥 + 1 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑦 + 1 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 11 |
2 9 10
|
frsucmpt2 |
⊢ ( ( 𝑧 ∈ ω ∧ ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ V ) → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 12 |
8 11
|
mpan2 |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 13 |
7 12
|
vtoclga |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ suc 𝐴 ) = ( ( 𝐺 ‘ 𝐴 ) + 1 ) ) |