Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
3 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ∅ ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ ∅ ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑧 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑦 = suc 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐴 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
11 |
1 2
|
om2uz0i |
⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
12 |
|
uzid |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
13 |
1 12
|
ax-mp |
⊢ 𝐶 ∈ ( ℤ≥ ‘ 𝐶 ) |
14 |
11 13
|
eqeltri |
⊢ ( 𝐺 ‘ ∅ ) ∈ ( ℤ≥ ‘ 𝐶 ) |
15 |
|
peano2uz |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
16 |
1 2
|
om2uzsuci |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
18 |
15 17
|
syl5ibr |
⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
19 |
4 6 8 10 14 18
|
finds |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |