| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
| 2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
| 3 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ∅ ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ ∅ ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑧 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑦 = suc 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 11 |
1 2
|
om2uz0i |
⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
| 12 |
|
uzid |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 13 |
1 12
|
ax-mp |
⊢ 𝐶 ∈ ( ℤ≥ ‘ 𝐶 ) |
| 14 |
11 13
|
eqeltri |
⊢ ( 𝐺 ‘ ∅ ) ∈ ( ℤ≥ ‘ 𝐶 ) |
| 15 |
|
peano2uz |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 16 |
1 2
|
om2uzsuci |
⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 17 |
16
|
eleq1d |
⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 18 |
15 17
|
imbitrrid |
⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 19 |
4 6 8 10 14 18
|
finds |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |