| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 | ⊢ ( 𝑥  =  ∅  →  ( ∅  ∈  𝑥  ↔  ∅  ∈  ∅ ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( ω  ↑o  𝑥 )  =  ( ω  ↑o  ∅ ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( 𝐴  ·o  ( ω  ↑o  ∅ ) ) ) | 
						
							| 4 | 3 2 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 )  ↔  ( 𝐴  ·o  ( ω  ↑o  ∅ ) )  =  ( ω  ↑o  ∅ ) ) ) | 
						
							| 5 | 1 4 | imbi12d | ⊢ ( 𝑥  =  ∅  →  ( ( ∅  ∈  𝑥  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) )  ↔  ( ∅  ∈  ∅  →  ( 𝐴  ·o  ( ω  ↑o  ∅ ) )  =  ( ω  ↑o  ∅ ) ) ) ) | 
						
							| 6 |  | eleq2 | ⊢ ( 𝑥  =  𝑦  →  ( ∅  ∈  𝑥  ↔  ∅  ∈  𝑦 ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ω  ↑o  𝑥 )  =  ( ω  ↑o  𝑦 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 9 | 8 7 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 )  ↔  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 10 | 6 9 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ∅  ∈  𝑥  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) )  ↔  ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 11 |  | eleq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( ∅  ∈  𝑥  ↔  ∅  ∈  suc  𝑦 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( ω  ↑o  𝑥 )  =  ( ω  ↑o  suc  𝑦 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) ) ) | 
						
							| 14 | 13 12 | eqeq12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 )  ↔  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) | 
						
							| 15 | 11 14 | imbi12d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( ∅  ∈  𝑥  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) )  ↔  ( ∅  ∈  suc  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 16 |  | eleq2 | ⊢ ( 𝑥  =  𝐵  →  ( ∅  ∈  𝑥  ↔  ∅  ∈  𝐵 ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( ω  ↑o  𝑥 )  =  ( ω  ↑o  𝐵 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) ) ) | 
						
							| 19 | 18 17 | eqeq12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 )  ↔  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) ) | 
						
							| 20 | 16 19 | imbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( ∅  ∈  𝑥  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) )  ↔  ( ∅  ∈  𝐵  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) ) ) | 
						
							| 21 |  | noel | ⊢ ¬  ∅  ∈  ∅ | 
						
							| 22 | 21 | pm2.21i | ⊢ ( ∅  ∈  ∅  →  ( 𝐴  ·o  ( ω  ↑o  ∅ ) )  =  ( ω  ↑o  ∅ ) ) | 
						
							| 23 | 22 | a1i | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  →  ( ∅  ∈  ∅  →  ( 𝐴  ·o  ( ω  ↑o  ∅ ) )  =  ( ω  ↑o  ∅ ) ) ) | 
						
							| 24 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ω  ∈  On ) | 
						
							| 25 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  𝐴  ∈  ω ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ∅  ∈  𝐴 ) | 
						
							| 27 |  | omabslem | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ·o  ω )  =  ω ) | 
						
							| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( 𝐴  ·o  ω )  =  ω ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  ∧  𝑦  =  ∅ )  →  ( 𝐴  ·o  ω )  =  ω ) | 
						
							| 30 |  | suceq | ⊢ ( 𝑦  =  ∅  →  suc  𝑦  =  suc  ∅ ) | 
						
							| 31 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 32 | 30 31 | eqtr4di | ⊢ ( 𝑦  =  ∅  →  suc  𝑦  =  1o ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑦  =  ∅  →  ( ω  ↑o  suc  𝑦 )  =  ( ω  ↑o  1o ) ) | 
						
							| 34 |  | oe1 | ⊢ ( ω  ∈  On  →  ( ω  ↑o  1o )  =  ω ) | 
						
							| 35 | 34 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ω  ↑o  1o )  =  ω ) | 
						
							| 36 | 33 35 | sylan9eqr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  ∧  𝑦  =  ∅ )  →  ( ω  ↑o  suc  𝑦 )  =  ω ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  ∧  𝑦  =  ∅ )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( 𝐴  ·o  ω ) ) | 
						
							| 38 | 29 37 36 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  ∧  𝑦  =  ∅ )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) | 
						
							| 39 | 38 | ex | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( 𝑦  =  ∅  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) | 
						
							| 40 | 39 | a1dd | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( 𝑦  =  ∅  →  ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  ·o  ω )  =  ( ( ω  ↑o  𝑦 )  ·o  ω ) ) | 
						
							| 42 |  | oesuc | ⊢ ( ( ω  ∈  On  ∧  𝑦  ∈  On )  →  ( ω  ↑o  suc  𝑦 )  =  ( ( ω  ↑o  𝑦 )  ·o  ω ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ω  ↑o  suc  𝑦 )  =  ( ( ω  ↑o  𝑦 )  ·o  ω ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( 𝐴  ·o  ( ( ω  ↑o  𝑦 )  ·o  ω ) ) ) | 
						
							| 45 |  | nnon | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  𝐴  ∈  On ) | 
						
							| 47 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  𝑦  ∈  On )  →  ( ω  ↑o  𝑦 )  ∈  On ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ω  ↑o  𝑦 )  ∈  On ) | 
						
							| 49 |  | omass | ⊢ ( ( 𝐴  ∈  On  ∧  ( ω  ↑o  𝑦 )  ∈  On  ∧  ω  ∈  On )  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  ·o  ω )  =  ( 𝐴  ·o  ( ( ω  ↑o  𝑦 )  ·o  ω ) ) ) | 
						
							| 50 | 46 48 24 49 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  ·o  ω )  =  ( 𝐴  ·o  ( ( ω  ↑o  𝑦 )  ·o  ω ) ) ) | 
						
							| 51 | 44 50 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  ·o  ω ) ) | 
						
							| 52 | 51 43 | eqeq12d | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 )  ↔  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  ·o  ω )  =  ( ( ω  ↑o  𝑦 )  ·o  ω ) ) ) | 
						
							| 53 | 41 52 | imbitrrid | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) | 
						
							| 54 | 53 | imim2d | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 55 | 54 | com23 | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ∅  ∈  𝑦  →  ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 56 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  𝑦  ∈  On ) | 
						
							| 57 |  | on0eqel | ⊢ ( 𝑦  ∈  On  →  ( 𝑦  =  ∅  ∨  ∅  ∈  𝑦 ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( 𝑦  =  ∅  ∨  ∅  ∈  𝑦 ) ) | 
						
							| 59 | 40 55 58 | mpjaod | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) | 
						
							| 60 | 59 | a1dd | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝑦  ∈  On ) )  →  ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( ∅  ∈  suc  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 61 | 60 | anassrs | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  ∧  𝑦  ∈  On )  →  ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( ∅  ∈  suc  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) ) | 
						
							| 62 | 61 | expcom | ⊢ ( 𝑦  ∈  On  →  ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  →  ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( ∅  ∈  suc  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  suc  𝑦 ) )  =  ( ω  ↑o  suc  𝑦 ) ) ) ) ) | 
						
							| 63 | 45 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  𝐴  ∈  On ) | 
						
							| 64 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ω  ∈  On ) | 
						
							| 65 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  Lim  𝑥 ) | 
						
							| 66 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 67 | 65 66 | jctil | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) ) | 
						
							| 68 |  | limelon | ⊢ ( ( 𝑥  ∈  V  ∧  Lim  𝑥 )  →  𝑥  ∈  On ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  𝑥  ∈  On ) | 
						
							| 70 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  𝑥  ∈  On )  →  ( ω  ↑o  𝑥 )  ∈  On ) | 
						
							| 71 | 64 69 70 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ( ω  ↑o  𝑥 )  ∈  On ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( ω  ↑o  𝑥 )  ∈  On ) | 
						
							| 73 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 74 |  | ondif2 | ⊢ ( ω  ∈  ( On  ∖  2o )  ↔  ( ω  ∈  On  ∧  1o  ∈  ω ) ) | 
						
							| 75 | 64 73 74 | sylanblrc | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ω  ∈  ( On  ∖  2o ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ω  ∈  ( On  ∖  2o ) ) | 
						
							| 77 | 67 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) ) | 
						
							| 78 |  | oelimcl | ⊢ ( ( ω  ∈  ( On  ∖  2o )  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  →  Lim  ( ω  ↑o  𝑥 ) ) | 
						
							| 79 | 76 77 78 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  Lim  ( ω  ↑o  𝑥 ) ) | 
						
							| 80 |  | omlim | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( ω  ↑o  𝑥 )  ∈  On  ∧  Lim  ( ω  ↑o  𝑥 ) ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ∪  𝑧  ∈  ( ω  ↑o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 81 | 63 72 79 80 | syl12anc | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ∪  𝑧  ∈  ( ω  ↑o  𝑥 ) ( 𝐴  ·o  𝑧 ) ) | 
						
							| 82 |  | simplrl | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ω  ∈  On ) | 
						
							| 83 |  | oelim2 | ⊢ ( ( ω  ∈  On  ∧  ( 𝑥  ∈  V  ∧  Lim  𝑥 ) )  →  ( ω  ↑o  𝑥 )  =  ∪  𝑦  ∈  ( 𝑥  ∖  1o ) ( ω  ↑o  𝑦 ) ) | 
						
							| 84 | 82 77 83 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( ω  ↑o  𝑥 )  =  ∪  𝑦  ∈  ( 𝑥  ∖  1o ) ( ω  ↑o  𝑦 ) ) | 
						
							| 85 | 84 | eleq2d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝑧  ∈  ( ω  ↑o  𝑥 )  ↔  𝑧  ∈  ∪  𝑦  ∈  ( 𝑥  ∖  1o ) ( ω  ↑o  𝑦 ) ) ) | 
						
							| 86 |  | eliun | ⊢ ( 𝑧  ∈  ∪  𝑦  ∈  ( 𝑥  ∖  1o ) ( ω  ↑o  𝑦 )  ↔  ∃ 𝑦  ∈  ( 𝑥  ∖  1o ) 𝑧  ∈  ( ω  ↑o  𝑦 ) ) | 
						
							| 87 | 85 86 | bitrdi | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝑧  ∈  ( ω  ↑o  𝑥 )  ↔  ∃ 𝑦  ∈  ( 𝑥  ∖  1o ) 𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 88 | 69 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  𝑥  ∈  On ) | 
						
							| 89 |  | anass | ⊢ ( ( ( 𝑦  ∈  𝑥  ∧  ∅  ∈  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  ↔  ( 𝑦  ∈  𝑥  ∧  ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 90 |  | onelon | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  On ) | 
						
							| 91 |  | on0eln0 | ⊢ ( 𝑦  ∈  On  →  ( ∅  ∈  𝑦  ↔  𝑦  ≠  ∅ ) ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  ( ∅  ∈  𝑦  ↔  𝑦  ≠  ∅ ) ) | 
						
							| 93 | 92 | pm5.32da | ⊢ ( 𝑥  ∈  On  →  ( ( 𝑦  ∈  𝑥  ∧  ∅  ∈  𝑦 )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑦  ≠  ∅ ) ) ) | 
						
							| 94 |  | dif1o | ⊢ ( 𝑦  ∈  ( 𝑥  ∖  1o )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑦  ≠  ∅ ) ) | 
						
							| 95 | 93 94 | bitr4di | ⊢ ( 𝑥  ∈  On  →  ( ( 𝑦  ∈  𝑥  ∧  ∅  ∈  𝑦 )  ↔  𝑦  ∈  ( 𝑥  ∖  1o ) ) ) | 
						
							| 96 | 95 | anbi1d | ⊢ ( 𝑥  ∈  On  →  ( ( ( 𝑦  ∈  𝑥  ∧  ∅  ∈  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  ↔  ( 𝑦  ∈  ( 𝑥  ∖  1o )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 97 | 89 96 | bitr3id | ⊢ ( 𝑥  ∈  On  →  ( ( 𝑦  ∈  𝑥  ∧  ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  ↔  ( 𝑦  ∈  ( 𝑥  ∖  1o )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 98 | 97 | rexbidv2 | ⊢ ( 𝑥  ∈  On  →  ( ∃ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  ↔  ∃ 𝑦  ∈  ( 𝑥  ∖  1o ) 𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 99 | 88 98 | syl | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( ∃ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  ↔  ∃ 𝑦  ∈  ( 𝑥  ∖  1o ) 𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 100 | 87 99 | bitr4d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝑧  ∈  ( ω  ↑o  𝑥 )  ↔  ∃ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 101 |  | r19.29 | ⊢ ( ( ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ∃ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ∃ 𝑦  ∈  𝑥 ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 102 |  | id | ⊢ ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 103 | 102 | imp | ⊢ ( ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ∅  ∈  𝑦 )  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) | 
						
							| 104 | 103 | anim1i | ⊢ ( ( ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ∅  ∈  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 105 | 104 | anasss | ⊢ ( ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 106 | 71 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( ω  ↑o  𝑥 )  ∈  On ) | 
						
							| 107 |  | eloni | ⊢ ( ( ω  ↑o  𝑥 )  ∈  On  →  Ord  ( ω  ↑o  𝑥 ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  Ord  ( ω  ↑o  𝑥 ) ) | 
						
							| 109 |  | simprr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  𝑧  ∈  ( ω  ↑o  𝑦 ) ) | 
						
							| 110 | 64 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ω  ∈  On ) | 
						
							| 111 | 69 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  𝑥  ∈  On ) | 
						
							| 112 |  | simplr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  𝑦  ∈  𝑥 ) | 
						
							| 113 | 111 112 90 | syl2anc | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  𝑦  ∈  On ) | 
						
							| 114 | 110 113 47 | syl2anc | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( ω  ↑o  𝑦 )  ∈  On ) | 
						
							| 115 |  | onelon | ⊢ ( ( ( ω  ↑o  𝑦 )  ∈  On  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  →  𝑧  ∈  On ) | 
						
							| 116 | 114 109 115 | syl2anc | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  𝑧  ∈  On ) | 
						
							| 117 | 45 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  𝐴  ∈  On ) | 
						
							| 118 | 117 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  𝐴  ∈  On ) | 
						
							| 119 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ∅  ∈  𝐴 ) | 
						
							| 120 | 119 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ∅  ∈  𝐴 ) | 
						
							| 121 |  | omord2 | ⊢ ( ( ( 𝑧  ∈  On  ∧  ( ω  ↑o  𝑦 )  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑧  ∈  ( ω  ↑o  𝑦 )  ↔  ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 122 | 116 114 118 120 121 | syl31anc | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝑧  ∈  ( ω  ↑o  𝑦 )  ↔  ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) ) ) ) | 
						
							| 123 | 109 122 | mpbid | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  𝑧 )  ∈  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) ) ) | 
						
							| 124 |  | simprl | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) | 
						
							| 125 | 123 124 | eleqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  𝑧 )  ∈  ( ω  ↑o  𝑦 ) ) | 
						
							| 126 | 75 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ω  ∈  ( On  ∖  2o ) ) | 
						
							| 127 |  | oeord | ⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  On  ∧  ω  ∈  ( On  ∖  2o ) )  →  ( 𝑦  ∈  𝑥  ↔  ( ω  ↑o  𝑦 )  ∈  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 128 | 113 111 126 127 | syl3anc | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝑦  ∈  𝑥  ↔  ( ω  ↑o  𝑦 )  ∈  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 129 | 112 128 | mpbid | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( ω  ↑o  𝑦 )  ∈  ( ω  ↑o  𝑥 ) ) | 
						
							| 130 |  | ontr1 | ⊢ ( ( ω  ↑o  𝑥 )  ∈  On  →  ( ( ( 𝐴  ·o  𝑧 )  ∈  ( ω  ↑o  𝑦 )  ∧  ( ω  ↑o  𝑦 )  ∈  ( ω  ↑o  𝑥 ) )  →  ( 𝐴  ·o  𝑧 )  ∈  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 131 | 106 130 | syl | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( ( ( 𝐴  ·o  𝑧 )  ∈  ( ω  ↑o  𝑦 )  ∧  ( ω  ↑o  𝑦 )  ∈  ( ω  ↑o  𝑥 ) )  →  ( 𝐴  ·o  𝑧 )  ∈  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 132 | 125 129 131 | mp2and | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  𝑧 )  ∈  ( ω  ↑o  𝑥 ) ) | 
						
							| 133 |  | ordelss | ⊢ ( ( Ord  ( ω  ↑o  𝑥 )  ∧  ( 𝐴  ·o  𝑧 )  ∈  ( ω  ↑o  𝑥 ) )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) | 
						
							| 134 | 108 132 133 | syl2anc | ⊢ ( ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) | 
						
							| 135 | 134 | ex | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  →  ( ( ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 )  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 136 | 105 135 | syl5 | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  𝑦  ∈  𝑥 )  →  ( ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 137 | 136 | rexlimdva | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ( ∃ 𝑦  ∈  𝑥 ( ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 138 | 101 137 | syl5 | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ( ( ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  ∧  ∃ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 139 | 138 | expdimp | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( ∃ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  ∧  𝑧  ∈  ( ω  ↑o  𝑦 ) )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 140 | 100 139 | sylbid | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝑧  ∈  ( ω  ↑o  𝑥 )  →  ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 141 | 140 | ralrimiv | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ∀ 𝑧  ∈  ( ω  ↑o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) | 
						
							| 142 |  | iunss | ⊢ ( ∪  𝑧  ∈  ( ω  ↑o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 )  ↔  ∀ 𝑧  ∈  ( ω  ↑o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) | 
						
							| 143 | 141 142 | sylibr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ∪  𝑧  ∈  ( ω  ↑o  𝑥 ) ( 𝐴  ·o  𝑧 )  ⊆  ( ω  ↑o  𝑥 ) ) | 
						
							| 144 | 81 143 | eqsstrd | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  ⊆  ( ω  ↑o  𝑥 ) ) | 
						
							| 145 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ∅  ∈  𝐴 ) | 
						
							| 146 |  | omword2 | ⊢ ( ( ( ( ω  ↑o  𝑥 )  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( ω  ↑o  𝑥 )  ⊆  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 147 | 72 63 145 146 | syl21anc | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( ω  ↑o  𝑥 )  ⊆  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 148 | 144 147 | eqssd | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  ∧  ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) ) | 
						
							| 149 | 148 | ex | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  Lim  𝑥 ) )  →  ( ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 150 | 149 | anassrs | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  ∧  Lim  𝑥 )  →  ( ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) ) ) | 
						
							| 151 | 150 | a1dd | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  ∧  Lim  𝑥 )  →  ( ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( ∅  ∈  𝑥  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) ) ) ) | 
						
							| 152 | 151 | expcom | ⊢ ( Lim  𝑥  →  ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  →  ( ∀ 𝑦  ∈  𝑥 ( ∅  ∈  𝑦  →  ( 𝐴  ·o  ( ω  ↑o  𝑦 ) )  =  ( ω  ↑o  𝑦 ) )  →  ( ∅  ∈  𝑥  →  ( 𝐴  ·o  ( ω  ↑o  𝑥 ) )  =  ( ω  ↑o  𝑥 ) ) ) ) ) | 
						
							| 153 | 5 10 15 20 23 62 152 | tfinds3 | ⊢ ( 𝐵  ∈  On  →  ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  →  ( ∅  ∈  𝐵  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) ) ) | 
						
							| 154 | 153 | com12 | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ω  ∈  On )  →  ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) ) ) | 
						
							| 155 | 154 | adantrr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐵  ∈  On  →  ( ∅  ∈  𝐵  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) ) ) | 
						
							| 156 | 155 | imp32 | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( ω  ∈  On  ∧  𝐵  ∈  On ) )  ∧  ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) | 
						
							| 157 | 156 | an32s | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 ) )  ∧  ( ω  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) | 
						
							| 158 |  | nnm0 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ·o  ∅ )  =  ∅ ) | 
						
							| 159 | 158 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 ) )  ∧  ¬  ( ω  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ∅ )  =  ∅ ) | 
						
							| 160 |  | fnoe | ⊢  ↑o   Fn  ( On  ×  On ) | 
						
							| 161 |  | fndm | ⊢ (  ↑o   Fn  ( On  ×  On )  →  dom   ↑o   =  ( On  ×  On ) ) | 
						
							| 162 | 160 161 | ax-mp | ⊢ dom   ↑o   =  ( On  ×  On ) | 
						
							| 163 | 162 | ndmov | ⊢ ( ¬  ( ω  ∈  On  ∧  𝐵  ∈  On )  →  ( ω  ↑o  𝐵 )  =  ∅ ) | 
						
							| 164 | 163 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 ) )  ∧  ¬  ( ω  ∈  On  ∧  𝐵  ∈  On ) )  →  ( ω  ↑o  𝐵 )  =  ∅ ) | 
						
							| 165 | 164 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 ) )  ∧  ¬  ( ω  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( 𝐴  ·o  ∅ ) ) | 
						
							| 166 | 159 165 164 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 ) )  ∧  ¬  ( ω  ∈  On  ∧  𝐵  ∈  On ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) | 
						
							| 167 | 157 166 | pm2.61dan | ⊢ ( ( ( 𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐵  ∈  On  ∧  ∅  ∈  𝐵 ) )  →  ( 𝐴  ·o  ( ω  ↑o  𝐵 ) )  =  ( ω  ↑o  𝐵 ) ) |