Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( ∅ ∈ 𝑥 ↔ ∅ ∈ ∅ ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ω ↑o 𝑥 ) = ( ω ↑o ∅ ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o ∅ ) ) ) |
4 |
3 2
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) ) |
5 |
1 4
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ ∅ → ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) ) ) |
6 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( ∅ ∈ 𝑥 ↔ ∅ ∈ 𝑦 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ω ↑o 𝑥 ) = ( ω ↑o 𝑦 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) |
9 |
8 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) |
10 |
6 9
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) ) |
11 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ∅ ∈ 𝑥 ↔ ∅ ∈ suc 𝑦 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ω ↑o 𝑥 ) = ( ω ↑o suc 𝑦 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) ) |
14 |
13 12
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
15 |
11 14
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
16 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( ∅ ∈ 𝑥 ↔ ∅ ∈ 𝐵 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( ω ↑o 𝑥 ) = ( ω ↑o 𝐵 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( 𝐴 ·o ( ω ↑o 𝐵 ) ) ) |
19 |
18 17
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ↔ ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) |
20 |
16 19
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ↔ ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
21 |
|
noel |
⊢ ¬ ∅ ∈ ∅ |
22 |
21
|
pm2.21i |
⊢ ( ∅ ∈ ∅ → ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) |
23 |
22
|
a1i |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ∅ ∈ ∅ → ( 𝐴 ·o ( ω ↑o ∅ ) ) = ( ω ↑o ∅ ) ) ) |
24 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ω ∈ On ) |
25 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → 𝐴 ∈ ω ) |
26 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ∅ ∈ 𝐴 ) |
27 |
|
omabslem |
⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o ω ) = ω ) |
28 |
24 25 26 27
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o ω ) = ω ) |
29 |
28
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( 𝐴 ·o ω ) = ω ) |
30 |
|
suceq |
⊢ ( 𝑦 = ∅ → suc 𝑦 = suc ∅ ) |
31 |
|
df-1o |
⊢ 1o = suc ∅ |
32 |
30 31
|
eqtr4di |
⊢ ( 𝑦 = ∅ → suc 𝑦 = 1o ) |
33 |
32
|
oveq2d |
⊢ ( 𝑦 = ∅ → ( ω ↑o suc 𝑦 ) = ( ω ↑o 1o ) ) |
34 |
|
oe1 |
⊢ ( ω ∈ On → ( ω ↑o 1o ) = ω ) |
35 |
34
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ω ↑o 1o ) = ω ) |
36 |
33 35
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( ω ↑o suc 𝑦 ) = ω ) |
37 |
36
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( 𝐴 ·o ω ) ) |
38 |
29 37 36
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) ∧ 𝑦 = ∅ ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) |
39 |
38
|
ex |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝑦 = ∅ → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
40 |
39
|
a1dd |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝑦 = ∅ → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
41 |
|
oveq1 |
⊢ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) |
42 |
|
oesuc |
⊢ ( ( ω ∈ On ∧ 𝑦 ∈ On ) → ( ω ↑o suc 𝑦 ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ω ↑o suc 𝑦 ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) |
44 |
43
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( 𝐴 ·o ( ( ω ↑o 𝑦 ) ·o ω ) ) ) |
45 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → 𝐴 ∈ On ) |
47 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝑦 ∈ On ) → ( ω ↑o 𝑦 ) ∈ On ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ω ↑o 𝑦 ) ∈ On ) |
49 |
|
omass |
⊢ ( ( 𝐴 ∈ On ∧ ( ω ↑o 𝑦 ) ∈ On ∧ ω ∈ On ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( 𝐴 ·o ( ( ω ↑o 𝑦 ) ·o ω ) ) ) |
50 |
46 48 24 49
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( 𝐴 ·o ( ( ω ↑o 𝑦 ) ·o ω ) ) ) |
51 |
44 50
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) ) |
52 |
51 43
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ↔ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ·o ω ) = ( ( ω ↑o 𝑦 ) ·o ω ) ) ) |
53 |
41 52
|
syl5ibr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
54 |
53
|
imim2d |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
55 |
54
|
com23 |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ∅ ∈ 𝑦 → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
56 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → 𝑦 ∈ On ) |
57 |
|
on0eqel |
⊢ ( 𝑦 ∈ On → ( 𝑦 = ∅ ∨ ∅ ∈ 𝑦 ) ) |
58 |
56 57
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝑦 = ∅ ∨ ∅ ∈ 𝑦 ) ) |
59 |
40 55 58
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) |
60 |
59
|
a1dd |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝑦 ∈ On ) ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
61 |
60
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) ∧ 𝑦 ∈ On ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) |
62 |
61
|
expcom |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ suc 𝑦 → ( 𝐴 ·o ( ω ↑o suc 𝑦 ) ) = ( ω ↑o suc 𝑦 ) ) ) ) ) |
63 |
45
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → 𝐴 ∈ On ) |
64 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ω ∈ On ) |
65 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → Lim 𝑥 ) |
66 |
|
vex |
⊢ 𝑥 ∈ V |
67 |
65 66
|
jctil |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) |
68 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
69 |
67 68
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → 𝑥 ∈ On ) |
70 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o 𝑥 ) ∈ On ) |
71 |
64 69 70
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
72 |
71
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
73 |
|
1onn |
⊢ 1o ∈ ω |
74 |
|
ondif2 |
⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) |
75 |
64 73 74
|
sylanblrc |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ω ∈ ( On ∖ 2o ) ) |
76 |
75
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ω ∈ ( On ∖ 2o ) ) |
77 |
67
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) |
78 |
|
oelimcl |
⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → Lim ( ω ↑o 𝑥 ) ) |
79 |
76 77 78
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → Lim ( ω ↑o 𝑥 ) ) |
80 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( ( ω ↑o 𝑥 ) ∈ On ∧ Lim ( ω ↑o 𝑥 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
81 |
63 72 79 80
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
82 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ω ∈ On ) |
83 |
|
oelim2 |
⊢ ( ( ω ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ω ↑o 𝑥 ) = ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ) |
84 |
82 77 83
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) = ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ) |
85 |
84
|
eleq2d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ 𝑧 ∈ ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ) ) |
86 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ ( 𝑥 ∖ 1o ) ( ω ↑o 𝑦 ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) |
87 |
85 86
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
88 |
69
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → 𝑥 ∈ On ) |
89 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
90 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
91 |
|
on0eln0 |
⊢ ( 𝑦 ∈ On → ( ∅ ∈ 𝑦 ↔ 𝑦 ≠ ∅ ) ) |
92 |
90 91
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ∅ ∈ 𝑦 ↔ 𝑦 ≠ ∅ ) ) |
93 |
92
|
pm5.32da |
⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ≠ ∅ ) ) ) |
94 |
|
dif1o |
⊢ ( 𝑦 ∈ ( 𝑥 ∖ 1o ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ≠ ∅ ) ) |
95 |
93 94
|
bitr4di |
⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ↔ 𝑦 ∈ ( 𝑥 ∖ 1o ) ) ) |
96 |
95
|
anbi1d |
⊢ ( 𝑥 ∈ On → ( ( ( 𝑦 ∈ 𝑥 ∧ ∅ ∈ 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑥 ∖ 1o ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
97 |
89 96
|
bitr3id |
⊢ ( 𝑥 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ↔ ( 𝑦 ∈ ( 𝑥 ∖ 1o ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
98 |
97
|
rexbidv2 |
⊢ ( 𝑥 ∈ On → ( ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
99 |
88 98
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ↔ ∃ 𝑦 ∈ ( 𝑥 ∖ 1o ) 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
100 |
87 99
|
bitr4d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) ↔ ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
101 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ∃ 𝑦 ∈ 𝑥 ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) ) |
102 |
|
id |
⊢ ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) |
103 |
102
|
imp |
⊢ ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∅ ∈ 𝑦 ) → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) |
104 |
103
|
anim1i |
⊢ ( ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∅ ∈ 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
105 |
104
|
anasss |
⊢ ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) |
106 |
71
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
107 |
|
eloni |
⊢ ( ( ω ↑o 𝑥 ) ∈ On → Ord ( ω ↑o 𝑥 ) ) |
108 |
106 107
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → Ord ( ω ↑o 𝑥 ) ) |
109 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑧 ∈ ( ω ↑o 𝑦 ) ) |
110 |
64
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ω ∈ On ) |
111 |
69
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑥 ∈ On ) |
112 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑦 ∈ 𝑥 ) |
113 |
111 112 90
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑦 ∈ On ) |
114 |
110 113 47
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑦 ) ∈ On ) |
115 |
|
onelon |
⊢ ( ( ( ω ↑o 𝑦 ) ∈ On ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → 𝑧 ∈ On ) |
116 |
114 109 115
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝑧 ∈ On ) |
117 |
45
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → 𝐴 ∈ On ) |
118 |
117
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → 𝐴 ∈ On ) |
119 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ∅ ∈ 𝐴 ) |
120 |
119
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ∅ ∈ 𝐴 ) |
121 |
|
omord2 |
⊢ ( ( ( 𝑧 ∈ On ∧ ( ω ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ ( ω ↑o 𝑦 ) ↔ ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) ) |
122 |
116 114 118 120 121
|
syl31anc |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑦 ) ↔ ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) ) |
123 |
109 122
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o ( ω ↑o 𝑦 ) ) ) |
124 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) |
125 |
123 124
|
eleqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑦 ) ) |
126 |
75
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ω ∈ ( On ∖ 2o ) ) |
127 |
|
oeord |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ∧ ω ∈ ( On ∖ 2o ) ) → ( 𝑦 ∈ 𝑥 ↔ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) ) |
128 |
113 111 126 127
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝑦 ∈ 𝑥 ↔ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) ) |
129 |
112 128
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) |
130 |
|
ontr1 |
⊢ ( ( ω ↑o 𝑥 ) ∈ On → ( ( ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑦 ) ∧ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) ) |
131 |
106 130
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( ( ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑦 ) ∧ ( ω ↑o 𝑦 ) ∈ ( ω ↑o 𝑥 ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) ) |
132 |
125 129 131
|
mp2and |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) |
133 |
|
ordelss |
⊢ ( ( Ord ( ω ↑o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ∈ ( ω ↑o 𝑥 ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
134 |
108 132 133
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
135 |
134
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
136 |
105 135
|
syl5 |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
137 |
136
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ∃ 𝑦 ∈ 𝑥 ( ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
138 |
101 137
|
syl5 |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ∧ ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
139 |
138
|
expdimp |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ∃ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 ∧ 𝑧 ∈ ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
140 |
100 139
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝑧 ∈ ( ω ↑o 𝑥 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) ) |
141 |
140
|
ralrimiv |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ∀ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
142 |
|
iunss |
⊢ ( ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ↔ ∀ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
143 |
141 142
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ∪ 𝑧 ∈ ( ω ↑o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ω ↑o 𝑥 ) ) |
144 |
81 143
|
eqsstrd |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) ⊆ ( ω ↑o 𝑥 ) ) |
145 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ∅ ∈ 𝐴 ) |
146 |
|
omword2 |
⊢ ( ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ω ↑o 𝑥 ) ⊆ ( 𝐴 ·o ( ω ↑o 𝑥 ) ) ) |
147 |
72 63 145 146
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) ⊆ ( 𝐴 ·o ( ω ↑o 𝑥 ) ) ) |
148 |
144 147
|
eqssd |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) |
149 |
148
|
ex |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ Lim 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) |
150 |
149
|
anassrs |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) |
151 |
150
|
a1dd |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) ) |
152 |
151
|
expcom |
⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( ∅ ∈ 𝑦 → ( 𝐴 ·o ( ω ↑o 𝑦 ) ) = ( ω ↑o 𝑦 ) ) → ( ∅ ∈ 𝑥 → ( 𝐴 ·o ( ω ↑o 𝑥 ) ) = ( ω ↑o 𝑥 ) ) ) ) ) |
153 |
5 10 15 20 23 62 152
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
154 |
153
|
com12 |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ω ∈ On ) → ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
155 |
154
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) ) ) |
156 |
155
|
imp32 |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( ω ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |
157 |
156
|
an32s |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |
158 |
|
nnm0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) |
159 |
158
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ∅ ) = ∅ ) |
160 |
|
fnoe |
⊢ ↑o Fn ( On × On ) |
161 |
|
fndm |
⊢ ( ↑o Fn ( On × On ) → dom ↑o = ( On × On ) ) |
162 |
160 161
|
ax-mp |
⊢ dom ↑o = ( On × On ) |
163 |
162
|
ndmov |
⊢ ( ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ↑o 𝐵 ) = ∅ ) |
164 |
163
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( ω ↑o 𝐵 ) = ∅ ) |
165 |
164
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( 𝐴 ·o ∅ ) ) |
166 |
159 165 164
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) ∧ ¬ ( ω ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |
167 |
157 166
|
pm2.61dan |
⊢ ( ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 ·o ( ω ↑o 𝐵 ) ) = ( ω ↑o 𝐵 ) ) |