| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnon | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On ) | 
						
							| 2 |  | limom | ⊢ Lim  ω | 
						
							| 3 | 2 | jctr | ⊢ ( ω  ∈  On  →  ( ω  ∈  On  ∧  Lim  ω ) ) | 
						
							| 4 |  | omlim | ⊢ ( ( 𝐴  ∈  On  ∧  ( ω  ∈  On  ∧  Lim  ω ) )  →  ( 𝐴  ·o  ω )  =  ∪  𝑥  ∈  ω ( 𝐴  ·o  𝑥 ) ) | 
						
							| 5 | 1 3 4 | syl2an | ⊢ ( ( 𝐴  ∈  ω  ∧  ω  ∈  On )  →  ( 𝐴  ·o  ω )  =  ∪  𝑥  ∈  ω ( 𝐴  ·o  𝑥 ) ) | 
						
							| 6 |  | ordom | ⊢ Ord  ω | 
						
							| 7 |  | nnmcl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  →  ( 𝐴  ·o  𝑥 )  ∈  ω ) | 
						
							| 8 |  | ordelss | ⊢ ( ( Ord  ω  ∧  ( 𝐴  ·o  𝑥 )  ∈  ω )  →  ( 𝐴  ·o  𝑥 )  ⊆  ω ) | 
						
							| 9 | 6 7 8 | sylancr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  →  ( 𝐴  ·o  𝑥 )  ⊆  ω ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝐴  ∈  ω  →  ∀ 𝑥  ∈  ω ( 𝐴  ·o  𝑥 )  ⊆  ω ) | 
						
							| 11 |  | iunss | ⊢ ( ∪  𝑥  ∈  ω ( 𝐴  ·o  𝑥 )  ⊆  ω  ↔  ∀ 𝑥  ∈  ω ( 𝐴  ·o  𝑥 )  ⊆  ω ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( 𝐴  ∈  ω  →  ∪  𝑥  ∈  ω ( 𝐴  ·o  𝑥 )  ⊆  ω ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  ω  ∈  On )  →  ∪  𝑥  ∈  ω ( 𝐴  ·o  𝑥 )  ⊆  ω ) | 
						
							| 14 | 5 13 | eqsstrd | ⊢ ( ( 𝐴  ∈  ω  ∧  ω  ∈  On )  →  ( 𝐴  ·o  ω )  ⊆  ω ) | 
						
							| 15 | 14 | ancoms | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  ω )  →  ( 𝐴  ·o  ω )  ⊆  ω ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ·o  ω )  ⊆  ω ) | 
						
							| 17 |  | omword2 | ⊢ ( ( ( ω  ∈  On  ∧  𝐴  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ω  ⊆  ( 𝐴  ·o  ω ) ) | 
						
							| 18 | 17 | 3impa | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  On  ∧  ∅  ∈  𝐴 )  →  ω  ⊆  ( 𝐴  ·o  ω ) ) | 
						
							| 19 | 1 18 | syl3an2 | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  →  ω  ⊆  ( 𝐴  ·o  ω ) ) | 
						
							| 20 | 16 19 | eqssd | ⊢ ( ( ω  ∈  On  ∧  𝐴  ∈  ω  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ·o  ω )  =  ω ) |