Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) |
4 |
1 3
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
8 |
5 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) |
12 |
9 11
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐶 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) |
17 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
18 |
|
om0 |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ∅ ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ∅ ) |
20 |
|
om0 |
⊢ ( 𝐵 ∈ On → ( 𝐵 ·o ∅ ) = ∅ ) |
21 |
20
|
oveq2d |
⊢ ( 𝐵 ∈ On → ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) = ( 𝐴 ·o ∅ ) ) |
22 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
23 |
21 22
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) = ∅ ) |
24 |
19 23
|
eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o ∅ ) = ( 𝐴 ·o ( 𝐵 ·o ∅ ) ) ) |
25 |
|
oveq1 |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
26 |
|
omsuc |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) ) |
27 |
17 26
|
stoic3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) ) |
28 |
|
omsuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
29 |
28
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) = ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
31 |
|
omcl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
32 |
|
odi |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
33 |
31 32
|
syl3an2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
34 |
33
|
3exp |
⊢ ( 𝐴 ∈ On → ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) |
35 |
34
|
expd |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) ) |
36 |
35
|
com34 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) ) |
37 |
36
|
pm2.43d |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) ) |
38 |
37
|
3imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
39 |
30 38
|
eqtrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) |
40 |
27 39
|
eqeq12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ↔ ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) +o ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) +o ( 𝐴 ·o 𝐵 ) ) ) ) |
41 |
25 40
|
syl5ibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
42 |
41
|
3exp |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
43 |
42
|
com3r |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
44 |
43
|
impd |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o suc 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) |
45 |
17
|
ancoms |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
46 |
|
vex |
⊢ 𝑥 ∈ V |
47 |
|
omlim |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
48 |
46 47
|
mpanr1 |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
49 |
45 48
|
sylan |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ Lim 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
50 |
49
|
an32s |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) ) |
52 |
|
iuneq2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
53 |
|
limelon |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) |
54 |
46 53
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
55 |
54
|
anim1i |
⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) |
56 |
55
|
ancoms |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) |
57 |
|
omordi |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 𝑦 ∈ 𝑥 → ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) ) ) |
58 |
56 57
|
sylan |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ( 𝑦 ∈ 𝑥 → ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) ) ) |
59 |
|
ssid |
⊢ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) |
60 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
61 |
60
|
sseq2d |
⊢ ( 𝑧 = ( 𝐵 ·o 𝑦 ) → ( ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ↔ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
62 |
61
|
rspcev |
⊢ ( ( ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) ∧ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
63 |
59 62
|
mpan2 |
⊢ ( ( 𝐵 ·o 𝑦 ) ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
64 |
58 63
|
syl6 |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
65 |
64
|
ralrimiv |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
66 |
|
iunss2 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ( 𝐴 ·o 𝑧 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
67 |
65 66
|
syl |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
68 |
67
|
adantlr |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
69 |
|
omcl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 ·o 𝑥 ) ∈ On ) |
70 |
54 69
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐵 ·o 𝑥 ) ∈ On ) |
71 |
|
onelon |
⊢ ( ( ( 𝐵 ·o 𝑥 ) ∈ On ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → 𝑧 ∈ On ) |
72 |
70 71
|
sylan |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → 𝑧 ∈ On ) |
73 |
72
|
adantlr |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → 𝑧 ∈ On ) |
74 |
|
omordlim |
⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) |
75 |
74
|
ex |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) ) |
76 |
46 75
|
mpanr1 |
⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) ) |
77 |
76
|
ad2antlr |
⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) ) ) |
78 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
79 |
54 78
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
80 |
79 31
|
sylan2 |
⊢ ( ( 𝐵 ∈ On ∧ ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
81 |
|
onelss |
⊢ ( ( 𝐵 ·o 𝑦 ) ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → 𝑧 ⊆ ( 𝐵 ·o 𝑦 ) ) ) |
82 |
81
|
3ad2ant2 |
⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → 𝑧 ⊆ ( 𝐵 ·o 𝑦 ) ) ) |
83 |
|
omwordi |
⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
84 |
82 83
|
syld |
⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
85 |
84
|
3exp |
⊢ ( 𝑧 ∈ On → ( ( 𝐵 ·o 𝑦 ) ∈ On → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
86 |
80 85
|
syl5 |
⊢ ( 𝑧 ∈ On → ( ( 𝐵 ∈ On ∧ ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
87 |
86
|
exp4d |
⊢ ( 𝑧 ∈ On → ( 𝐵 ∈ On → ( Lim 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) ) ) |
88 |
87
|
imp32 |
⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
89 |
88
|
com23 |
⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) → ( 𝐴 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
90 |
89
|
imp |
⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ 𝑥 → ( 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) |
91 |
90
|
reximdvai |
⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( 𝐵 ·o 𝑦 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
92 |
77 91
|
syld |
⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝑥 ) ) ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
93 |
92
|
exp31 |
⊢ ( 𝑧 ∈ On → ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 ·o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) ) ) |
94 |
93
|
imp4c |
⊢ ( 𝑧 ∈ On → ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) ) |
95 |
73 94
|
mpcom |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
96 |
95
|
ralrimiva |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ∀ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
97 |
|
iunss2 |
⊢ ( ∀ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ∃ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
98 |
96 97
|
syl |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
99 |
98
|
adantr |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) |
100 |
68 99
|
eqssd |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
101 |
|
omlimcl |
⊢ ( ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐵 ) → Lim ( 𝐵 ·o 𝑥 ) ) |
102 |
46 101
|
mpanlr1 |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) → Lim ( 𝐵 ·o 𝑥 ) ) |
103 |
|
ovex |
⊢ ( 𝐵 ·o 𝑥 ) ∈ V |
104 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ·o 𝑥 ) ∈ V ∧ Lim ( 𝐵 ·o 𝑥 ) ) ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
105 |
103 104
|
mpanr1 |
⊢ ( ( 𝐴 ∈ On ∧ Lim ( 𝐵 ·o 𝑥 ) ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
106 |
102 105
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
107 |
106
|
ancoms |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐵 ) ∧ 𝐴 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
108 |
107
|
an32s |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
109 |
100 108
|
eqtr4d |
⊢ ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
110 |
52 109
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
111 |
51 110
|
eqtrd |
⊢ ( ( ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
112 |
111
|
exp31 |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
113 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
114 |
|
ord0eln0 |
⊢ ( Ord 𝐵 → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
115 |
114
|
necon2bbid |
⊢ ( Ord 𝐵 → ( 𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵 ) ) |
116 |
113 115
|
syl |
⊢ ( 𝐵 ∈ On → ( 𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵 ) ) |
117 |
116
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵 ) ) |
118 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o ∅ ) ) |
119 |
118 22
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) |
120 |
119
|
oveq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( ∅ ·o 𝑥 ) ) |
121 |
|
om0r |
⊢ ( 𝑥 ∈ On → ( ∅ ·o 𝑥 ) = ∅ ) |
122 |
120 121
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 = ∅ ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∅ ) |
123 |
122
|
anassrs |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 = ∅ ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ∅ ) |
124 |
|
oveq1 |
⊢ ( 𝐵 = ∅ → ( 𝐵 ·o 𝑥 ) = ( ∅ ·o 𝑥 ) ) |
125 |
124 121
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐵 ·o 𝑥 ) = ∅ ) |
126 |
125
|
oveq2d |
⊢ ( ( 𝑥 ∈ On ∧ 𝐵 = ∅ ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ·o ∅ ) ) |
127 |
126 22
|
sylan9eq |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 = ∅ ) ∧ 𝐴 ∈ On ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∅ ) |
128 |
127
|
an32s |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 = ∅ ) → ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) = ∅ ) |
129 |
123 128
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐵 = ∅ ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) |
130 |
129
|
ex |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
131 |
54 130
|
sylan |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
132 |
131
|
adantll |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( 𝐵 = ∅ → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
133 |
117 132
|
sylbird |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ¬ ∅ ∈ 𝐵 → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
134 |
133
|
a1dd |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ¬ ∅ ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
135 |
112 134
|
pm2.61d |
⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) |
136 |
135
|
exp31 |
⊢ ( 𝐵 ∈ On → ( Lim 𝑥 → ( 𝐴 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) ) |
137 |
136
|
com3l |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) ) |
138 |
137
|
impd |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ·o 𝐵 ) ·o 𝑦 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝑥 ) = ( 𝐴 ·o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
139 |
4 8 12 16 24 44 138
|
tfinds3 |
⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) |
140 |
139
|
expd |
⊢ ( 𝐶 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) ) |
141 |
140
|
com3l |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) ) ) |
142 |
141
|
3imp |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |