| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omordi |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |
| 2 |
1
|
ex |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) ) |
| 4 |
3
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) ) |
| 5 |
4
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ) ) |
| 6 |
|
omordi |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 7 |
6
|
ex |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐴 → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 11 |
5 10
|
orim12d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 12 |
11
|
con3d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 13 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 14 |
|
eloni |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → Ord ( 𝐴 ·o 𝐵 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 ·o 𝐵 ) ) |
| 16 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ·o 𝐶 ) ∈ On ) |
| 17 |
|
eloni |
⊢ ( ( 𝐴 ·o 𝐶 ) ∈ On → Ord ( 𝐴 ·o 𝐶 ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → Ord ( 𝐴 ·o 𝐶 ) ) |
| 19 |
|
ordtri3 |
⊢ ( ( Ord ( 𝐴 ·o 𝐵 ) ∧ Ord ( 𝐴 ·o 𝐶 ) ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 20 |
15 18 19
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 21 |
20
|
3impdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ¬ ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o 𝐶 ) ∨ ( 𝐴 ·o 𝐶 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 23 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 24 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
| 25 |
|
ordtri3 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 26 |
23 24 25
|
syl2an |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 27 |
26
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 29 |
12 22 28
|
3imtr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ) |
| 31 |
29 30
|
impbid1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |