Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) ∈ On ↔ ( 𝐴 ·o ∅ ) ∈ On ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ On ↔ ( 𝐴 ·o 𝑦 ) ∈ On ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ On ↔ ( 𝐴 ·o suc 𝑦 ) ∈ On ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐵 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o 𝑥 ) ∈ On ↔ ( 𝐴 ·o 𝐵 ) ∈ On ) ) |
9 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
10 |
|
0elon |
⊢ ∅ ∈ On |
11 |
9 10
|
eqeltrdi |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) ∈ On ) |
12 |
|
oacl |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ On ) |
13 |
12
|
expcom |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ·o 𝑦 ) ∈ On → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ On ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ∈ On → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ On ) ) |
15 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
16 |
15
|
eleq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o suc 𝑦 ) ∈ On ↔ ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ On ) ) |
17 |
14 16
|
sylibrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ∈ On → ( 𝐴 ·o suc 𝑦 ) ∈ On ) ) |
18 |
17
|
expcom |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 ·o 𝑦 ) ∈ On → ( 𝐴 ·o suc 𝑦 ) ∈ On ) ) ) |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
|
iunon |
⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ∈ On ) |
21 |
19 20
|
mpan |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ∈ On ) |
22 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ) |
23 |
19 22
|
mpanr1 |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ) |
24 |
23
|
eleq1d |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 ·o 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ∈ On ) ) |
25 |
21 24
|
syl5ibr |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ∈ On → ( 𝐴 ·o 𝑥 ) ∈ On ) ) |
26 |
25
|
expcom |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ∈ On → ( 𝐴 ·o 𝑥 ) ∈ On ) ) ) |
27 |
2 4 6 8 11 18 26
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝐴 ·o 𝐵 ) ∈ On ) ) |
28 |
27
|
impcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |