Description: Omega is an ordinal number. Theorem 1.22 of Schloeder p. 3. (Contributed by NM, 10-May-1998) (Revised by Mario Carneiro, 30-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | ⊢ ω ∈ V | |
| 2 | omelon2 | ⊢ ( ω ∈ V → ω ∈ On ) | |
| 3 | 1 2 | ax-mp | ⊢ ω ∈ On |