Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omeoALTV | ⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 − 𝐵 ) ∈ Odd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddz | ⊢ ( 𝐴 ∈ Odd → 𝐴 ∈ ℤ ) | |
| 2 | 1 | zcnd | ⊢ ( 𝐴 ∈ Odd → 𝐴 ∈ ℂ ) |
| 3 | evenz | ⊢ ( 𝐵 ∈ Even → 𝐵 ∈ ℤ ) | |
| 4 | 3 | zcnd | ⊢ ( 𝐵 ∈ Even → 𝐵 ∈ ℂ ) |
| 5 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 6 | 2 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 7 | enege | ⊢ ( 𝐵 ∈ Even → - 𝐵 ∈ Even ) | |
| 8 | opeoALTV | ⊢ ( ( 𝐴 ∈ Odd ∧ - 𝐵 ∈ Even ) → ( 𝐴 + - 𝐵 ) ∈ Odd ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + - 𝐵 ) ∈ Odd ) |
| 10 | 6 9 | eqeltrrd | ⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 − 𝐵 ) ∈ Odd ) |