Metamath Proof Explorer


Theorem omeu

Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion omeu ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃! 𝑧𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 omeulem1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 )
2 opex 𝑥 , 𝑦 ⟩ ∈ V
3 2 isseti 𝑧 𝑧 = ⟨ 𝑥 , 𝑦
4 19.41v ( ∃ 𝑧 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( ∃ 𝑧 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )
5 3 4 mpbiran ( ∃ 𝑧 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 )
6 5 rexbii ( ∃ 𝑦𝐴𝑧 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑦𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 )
7 rexcom4 ( ∃ 𝑦𝐴𝑧 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑧𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )
8 6 7 bitr3i ( ∃ 𝑦𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ∃ 𝑧𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )
9 8 rexbii ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ∃ 𝑥 ∈ On ∃ 𝑧𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )
10 rexcom4 ( ∃ 𝑥 ∈ On ∃ 𝑧𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑧𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )
11 9 10 bitri ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ∃ 𝑧𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )
12 1 11 sylib ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )
13 simp2rl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
14 simp3rl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ )
15 simp2rr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 )
16 simp3rr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 )
17 15 16 eqtr4d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) )
18 simp11 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝐴 ∈ On )
19 simp13 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝐴 ≠ ∅ )
20 simp2ll ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑥 ∈ On )
21 simp2lr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑦𝐴 )
22 simp3ll ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑟 ∈ On )
23 simp3lr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑠𝐴 )
24 omopth2 ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ) → ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) ↔ ( 𝑥 = 𝑟𝑦 = 𝑠 ) ) )
25 18 19 20 21 22 23 24 syl222anc ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) ↔ ( 𝑥 = 𝑟𝑦 = 𝑠 ) ) )
26 17 25 mpbid ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ( 𝑥 = 𝑟𝑦 = 𝑠 ) )
27 opeq12 ( ( 𝑥 = 𝑟𝑦 = 𝑠 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑟 , 𝑠 ⟩ )
28 26 27 syl ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑟 , 𝑠 ⟩ )
29 14 28 eqtr4d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑡 = ⟨ 𝑥 , 𝑦 ⟩ )
30 13 29 eqtr4d ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ∧ ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) ) → 𝑧 = 𝑡 )
31 30 3expia ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) → ( ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) ∧ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) )
32 31 exp4b ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) ∧ ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) → ( ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) ) )
33 32 expd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ( 𝑥 ∈ On ∧ 𝑦𝐴 ) → ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) → ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) → ( ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) ) ) )
34 33 rexlimdvv ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) → ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) → ( ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) ) )
35 34 imp ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝑟 ∈ On ∧ 𝑠𝐴 ) → ( ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) ) )
36 35 rexlimdvv ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) → 𝑧 = 𝑡 ) )
37 36 expimpd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) )
38 37 alrimivv ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∀ 𝑧𝑡 ( ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) )
39 opeq1 ( 𝑥 = 𝑟 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑟 , 𝑦 ⟩ )
40 39 eqeq2d ( 𝑥 = 𝑟 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑧 = ⟨ 𝑟 , 𝑦 ⟩ ) )
41 oveq2 ( 𝑥 = 𝑟 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑟 ) )
42 41 oveq1d ( 𝑥 = 𝑟 → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) )
43 42 eqeq1d ( 𝑥 = 𝑟 → ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ↔ ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ) )
44 40 43 anbi12d ( 𝑥 = 𝑟 → ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( 𝑧 = ⟨ 𝑟 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ) ) )
45 opeq2 ( 𝑦 = 𝑠 → ⟨ 𝑟 , 𝑦 ⟩ = ⟨ 𝑟 , 𝑠 ⟩ )
46 45 eqeq2d ( 𝑦 = 𝑠 → ( 𝑧 = ⟨ 𝑟 , 𝑦 ⟩ ↔ 𝑧 = ⟨ 𝑟 , 𝑠 ⟩ ) )
47 oveq2 ( 𝑦 = 𝑠 → ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) )
48 47 eqeq1d ( 𝑦 = 𝑠 → ( ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ↔ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) )
49 46 48 anbi12d ( 𝑦 = 𝑠 → ( ( 𝑧 = ⟨ 𝑟 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑦 ) = 𝐵 ) ↔ ( 𝑧 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) )
50 44 49 cbvrex2vw ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑧 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) )
51 eqeq1 ( 𝑧 = 𝑡 → ( 𝑧 = ⟨ 𝑟 , 𝑠 ⟩ ↔ 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ) )
52 51 anbi1d ( 𝑧 = 𝑡 → ( ( 𝑧 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ↔ ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) )
53 52 2rexbidv ( 𝑧 = 𝑡 → ( ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑧 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ↔ ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) )
54 50 53 bitrid ( 𝑧 = 𝑡 → ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) )
55 54 eu4 ( ∃! 𝑧𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ↔ ( ∃ 𝑧𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∀ 𝑧𝑡 ( ( ∃ 𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ∧ ∃ 𝑟 ∈ On ∃ 𝑠𝐴 ( 𝑡 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ( ( 𝐴 ·o 𝑟 ) +o 𝑠 ) = 𝐵 ) ) → 𝑧 = 𝑡 ) ) )
56 12 38 55 sylanbrc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃! 𝑧𝑥 ∈ On ∃ 𝑦𝐴 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) )