Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ On ) |
2 |
|
sucelon |
⊢ ( 𝐵 ∈ On ↔ suc 𝐵 ∈ On ) |
3 |
1 2
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → suc 𝐵 ∈ On ) |
4 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On ) |
5 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
8 |
|
omword2 |
⊢ ( ( ( suc 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) ) |
9 |
3 4 7 8
|
syl21anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) ) |
10 |
|
sucidg |
⊢ ( 𝐵 ∈ On → 𝐵 ∈ suc 𝐵 ) |
11 |
|
ssel |
⊢ ( suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) → ( 𝐵 ∈ suc 𝐵 → 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) ) |
12 |
10 11
|
syl5 |
⊢ ( suc 𝐵 ⊆ ( 𝐴 ·o suc 𝐵 ) → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) ) |
13 |
9 1 12
|
sylc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) |
14 |
|
suceq |
⊢ ( 𝑥 = 𝐵 → suc 𝑥 = suc 𝐵 ) |
15 |
14
|
oveq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o suc 𝑥 ) = ( 𝐴 ·o suc 𝐵 ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) ) |
17 |
16
|
rspcev |
⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ ( 𝐴 ·o suc 𝐵 ) ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ) |
18 |
1 13 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ) |
19 |
|
suceq |
⊢ ( 𝑥 = 𝑧 → suc 𝑥 = suc 𝑧 ) |
20 |
19
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ·o suc 𝑥 ) = ( 𝐴 ·o suc 𝑧 ) ) |
21 |
20
|
eleq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
22 |
21
|
onminex |
⊢ ( ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) → ∃ 𝑥 ∈ On ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
23 |
|
vex |
⊢ 𝑥 ∈ V |
24 |
23
|
elon |
⊢ ( 𝑥 ∈ On ↔ Ord 𝑥 ) |
25 |
|
ordzsl |
⊢ ( Ord 𝑥 ↔ ( 𝑥 = ∅ ∨ ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥 ) ) |
26 |
24 25
|
bitri |
⊢ ( 𝑥 ∈ On ↔ ( 𝑥 = ∅ ∨ ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥 ) ) |
27 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
28 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
29 |
27 28
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∅ ) → ( 𝐴 ·o 𝑥 ) = ∅ ) |
30 |
|
ne0i |
⊢ ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) → ( 𝐴 ·o 𝑥 ) ≠ ∅ ) |
31 |
30
|
necon2bi |
⊢ ( ( 𝐴 ·o 𝑥 ) = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
32 |
29 31
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∅ ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
33 |
32
|
ex |
⊢ ( 𝐴 ∈ On → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
34 |
33
|
a1d |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 = ∅ → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
37 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → 𝑥 = suc 𝑤 ) |
38 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) |
39 |
|
raleq |
⊢ ( 𝑥 = suc 𝑤 → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ ∀ 𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
40 |
|
vex |
⊢ 𝑤 ∈ V |
41 |
40
|
sucid |
⊢ 𝑤 ∈ suc 𝑤 |
42 |
|
suceq |
⊢ ( 𝑧 = 𝑤 → suc 𝑧 = suc 𝑤 ) |
43 |
42
|
oveq2d |
⊢ ( 𝑧 = 𝑤 → ( 𝐴 ·o suc 𝑧 ) = ( 𝐴 ·o suc 𝑤 ) ) |
44 |
43
|
eleq2d |
⊢ ( 𝑧 = 𝑤 → ( 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
45 |
44
|
notbid |
⊢ ( 𝑧 = 𝑤 → ( ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
46 |
45
|
rspcv |
⊢ ( 𝑤 ∈ suc 𝑤 → ( ∀ 𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
47 |
41 46
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ suc 𝑤 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) |
48 |
39 47
|
syl6bi |
⊢ ( 𝑥 = suc 𝑤 → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
49 |
37 38 48
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) |
50 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑤 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑤 ) ) |
51 |
50
|
eleq2d |
⊢ ( 𝑥 = suc 𝑤 → ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ↔ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
52 |
51
|
notbid |
⊢ ( 𝑥 = suc 𝑤 → ( ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ↔ ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) ) |
53 |
52
|
biimpar |
⊢ ( ( 𝑥 = suc 𝑤 ∧ ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑤 ) ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
54 |
37 49 53
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 = suc 𝑤 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
55 |
54
|
3expia |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
56 |
55
|
rexlimdvw |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
57 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ↔ ¬ ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) |
58 |
|
simpr |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → 𝐴 ∈ On ) |
59 |
23
|
a1i |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → 𝑥 ∈ V ) |
60 |
|
simpl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → Lim 𝑥 ) |
61 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ) |
62 |
58 59 60 61
|
syl12anc |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ) |
63 |
62
|
eleq2d |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ↔ 𝐵 ∈ ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ) ) |
64 |
|
eliun |
⊢ ( 𝐵 ∈ ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o 𝑧 ) ) |
65 |
|
limord |
⊢ ( Lim 𝑥 → Ord 𝑥 ) |
66 |
65
|
3ad2ant1 |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → Ord 𝑥 ) |
67 |
66 24
|
sylibr |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ On ) |
68 |
|
simp3 |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) |
69 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ On ) |
70 |
67 68 69
|
syl2anc |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ On ) |
71 |
|
suceloni |
⊢ ( 𝑧 ∈ On → suc 𝑧 ∈ On ) |
72 |
70 71
|
syl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → suc 𝑧 ∈ On ) |
73 |
|
simp2 |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → 𝐴 ∈ On ) |
74 |
|
sssucid |
⊢ 𝑧 ⊆ suc 𝑧 |
75 |
|
omwordi |
⊢ ( ( 𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ suc 𝑧 → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o suc 𝑧 ) ) ) |
76 |
74 75
|
mpi |
⊢ ( ( 𝑧 ∈ On ∧ suc 𝑧 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o suc 𝑧 ) ) |
77 |
70 72 73 76
|
syl3anc |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o suc 𝑧 ) ) |
78 |
77
|
sseld |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ∧ 𝑧 ∈ 𝑥 ) → ( 𝐵 ∈ ( 𝐴 ·o 𝑧 ) → 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
79 |
78
|
3expia |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ 𝑥 → ( 𝐵 ∈ ( 𝐴 ·o 𝑧 ) → 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) ) |
80 |
79
|
reximdvai |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o 𝑧 ) → ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
81 |
64 80
|
syl5bi |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ∪ 𝑧 ∈ 𝑥 ( 𝐴 ·o 𝑧 ) → ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
82 |
63 81
|
sylbid |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) ) |
83 |
82
|
con3d |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ¬ ∃ 𝑧 ∈ 𝑥 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
84 |
57 83
|
syl5bi |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
85 |
84
|
expimpd |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
86 |
85
|
com12 |
⊢ ( ( 𝐴 ∈ On ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( Lim 𝑥 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
87 |
86
|
3ad2antl1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( Lim 𝑥 → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
88 |
36 56 87
|
3jaod |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( ( 𝑥 = ∅ ∨ ∃ 𝑤 ∈ On 𝑥 = suc 𝑤 ∨ Lim 𝑥 ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
89 |
26 88
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 ∈ On → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
90 |
89
|
impr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) |
91 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → 𝐴 ∈ On ) |
92 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → 𝑥 ∈ On ) |
93 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
94 |
91 92 93
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
95 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → 𝐵 ∈ On ) |
96 |
|
ontri1 |
⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
97 |
94 95 96
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ( 𝐴 ·o 𝑥 ) ) ) |
98 |
90 97
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ) |
99 |
|
oawordex |
⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
100 |
94 95 99
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
101 |
98 100
|
mpbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
102 |
101
|
3adantr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
103 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
104 |
|
simp21 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ) |
105 |
|
simp11 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝐴 ∈ On ) |
106 |
|
simp23 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝑥 ∈ On ) |
107 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
108 |
105 106 107
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
109 |
104 108
|
eleqtrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝐵 ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
110 |
103 109
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
111 |
|
simp3l |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝑦 ∈ On ) |
112 |
105 106 93
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
113 |
|
oaord |
⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
114 |
111 105 112 113
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
115 |
110 114
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → 𝑦 ∈ 𝐴 ) |
116 |
115 103
|
jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ∧ ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) → ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
117 |
116
|
3expia |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ( 𝑦 ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) → ( 𝑦 ∈ 𝐴 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) |
118 |
117
|
reximdv2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ( ∃ 𝑦 ∈ On ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
119 |
102 118
|
mpd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |
120 |
119
|
expcom |
⊢ ( ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
121 |
120
|
3expia |
⊢ ( ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ( 𝑥 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) |
122 |
121
|
com13 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( 𝑥 ∈ On → ( ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) ) |
123 |
122
|
reximdvai |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On ( 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝐵 ∈ ( 𝐴 ·o suc 𝑧 ) ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
124 |
22 123
|
syl5 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On 𝐵 ∈ ( 𝐴 ·o suc 𝑥 ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) ) |
125 |
18 124
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝐵 ) |