| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3l |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐷 ∈ On ) |
| 2 |
|
eloni |
⊢ ( 𝐷 ∈ On → Ord 𝐷 ) |
| 3 |
|
ordsucss |
⊢ ( Ord 𝐷 → ( 𝐵 ∈ 𝐷 → suc 𝐵 ⊆ 𝐷 ) ) |
| 4 |
1 2 3
|
3syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → suc 𝐵 ⊆ 𝐷 ) ) |
| 5 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐵 ∈ On ) |
| 6 |
|
onsuc |
⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) |
| 7 |
5 6
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → suc 𝐵 ∈ On ) |
| 8 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐴 ∈ On ) |
| 9 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐴 ≠ ∅ ) |
| 10 |
|
on0eln0 |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 12 |
9 11
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ∅ ∈ 𝐴 ) |
| 13 |
|
omword |
⊢ ( ( ( suc 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc 𝐵 ⊆ 𝐷 ↔ ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ) ) |
| 14 |
7 1 8 12 13
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( suc 𝐵 ⊆ 𝐷 ↔ ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ) ) |
| 15 |
4 14
|
sylibd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ) ) |
| 16 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐷 ) ∈ On ) |
| 17 |
8 1 16
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐴 ·o 𝐷 ) ∈ On ) |
| 18 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐸 ∈ 𝐴 ) |
| 19 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝐸 ∈ 𝐴 ) → 𝐸 ∈ On ) |
| 20 |
8 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐸 ∈ On ) |
| 21 |
|
oaword1 |
⊢ ( ( ( 𝐴 ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( 𝐴 ·o 𝐷 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 22 |
|
sstr |
⊢ ( ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) ∧ ( 𝐴 ·o 𝐷 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 23 |
22
|
expcom |
⊢ ( ( 𝐴 ·o 𝐷 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 24 |
21 23
|
syl |
⊢ ( ( ( 𝐴 ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 25 |
17 20 24
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( 𝐴 ·o 𝐷 ) → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 26 |
15 25
|
syld |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 27 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐶 ∈ 𝐴 ) |
| 28 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ On ) |
| 29 |
8 27 28
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → 𝐶 ∈ On ) |
| 30 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 31 |
8 5 30
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 32 |
|
oaord |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( 𝐶 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) ) |
| 33 |
32
|
biimpa |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 34 |
29 8 31 27 33
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 35 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 36 |
8 5 35
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 37 |
34 36
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( 𝐴 ·o suc 𝐵 ) ) |
| 38 |
|
ssel |
⊢ ( ( 𝐴 ·o suc 𝐵 ) ⊆ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( 𝐴 ·o suc 𝐵 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 39 |
26 37 38
|
syl6ci |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐷 → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 40 |
|
simpr |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → 𝐶 ∈ 𝐸 ) |
| 41 |
|
oaord |
⊢ ( ( 𝐶 ∈ On ∧ 𝐸 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( 𝐶 ∈ 𝐸 ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) ) ) |
| 42 |
40 41
|
imbitrid |
⊢ ( ( 𝐶 ∈ On ∧ 𝐸 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝐵 = 𝐷 → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐷 ) ) |
| 44 |
43
|
oveq1d |
⊢ ( 𝐵 = 𝐷 → ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 46 |
45
|
eleq2d |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐸 ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 47 |
42 46
|
mpbidi |
⊢ ( ( 𝐶 ∈ On ∧ 𝐸 ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 48 |
29 20 31 47
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 49 |
39 48
|
jaod |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |