Step |
Hyp |
Ref |
Expression |
1 |
|
omf1o.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) |
2 |
|
omf1o.2 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) |
3 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) = ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) |
4 |
3
|
omxpenlem |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
6 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) = ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) |
7 |
6
|
xpcomf1o |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) |
8 |
|
f1oco |
⊢ ( ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ∧ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) ) → ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
9 |
5 7 8
|
sylancl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
10 |
6 3
|
xpcomco |
⊢ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) |
11 |
2 10
|
eqtr4i |
⊢ 𝐺 = ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) |
12 |
|
f1oeq1 |
⊢ ( 𝐺 = ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) → ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐴 , 𝑥 ∈ 𝐵 ↦ ( ( 𝐵 ·o 𝑦 ) +o 𝑥 ) ) ∘ ( 𝑧 ∈ ( 𝐵 × 𝐴 ) ↦ ∪ ◡ { 𝑧 } ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
14 |
9 13
|
sylibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
15 |
1
|
omxpenlem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |
16 |
|
f1ocnv |
⊢ ( 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) → ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) |
18 |
|
f1oco |
⊢ ( ( 𝐺 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ∧ ◡ 𝐹 : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |
19 |
14 17 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐺 ∘ ◡ 𝐹 ) : ( 𝐴 ·o 𝐵 ) –1-1-onto→ ( 𝐵 ·o 𝐴 ) ) |