| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omf1o.1 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐴  ↦  ( ( 𝐴  ·o  𝑥 )  +o  𝑦 ) ) | 
						
							| 2 |  | omf1o.2 | ⊢ 𝐺  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐴  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  =  ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) ) | 
						
							| 4 | 3 | omxpenlem | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) ) : ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) ) : ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } )  =  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) | 
						
							| 7 | 6 | xpcomf1o | ⊢ ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐴  ×  𝐵 ) | 
						
							| 8 |  | f1oco | ⊢ ( ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) ) : ( 𝐴  ×  𝐵 ) –1-1-onto→ ( 𝐵  ·o  𝐴 )  ∧  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐴  ×  𝐵 ) )  →  ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  ∘  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) ) : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) | 
						
							| 9 | 5 7 8 | sylancl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  ∘  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) ) : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) | 
						
							| 10 | 6 3 | xpcomco | ⊢ ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  ∘  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐴  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) ) | 
						
							| 11 | 2 10 | eqtr4i | ⊢ 𝐺  =  ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  ∘  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) ) | 
						
							| 12 |  | f1oeq1 | ⊢ ( 𝐺  =  ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  ∘  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) )  →  ( 𝐺 : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 )  ↔  ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  ∘  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) ) : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( 𝐺 : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 )  ↔  ( ( 𝑦  ∈  𝐴 ,  𝑥  ∈  𝐵  ↦  ( ( 𝐵  ·o  𝑦 )  +o  𝑥 ) )  ∘  ( 𝑧  ∈  ( 𝐵  ×  𝐴 )  ↦  ∪  ◡ { 𝑧 } ) ) : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) | 
						
							| 14 | 9 13 | sylibr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐺 : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) | 
						
							| 15 | 1 | omxpenlem | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  𝐹 : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐴  ·o  𝐵 ) ) | 
						
							| 16 |  | f1ocnv | ⊢ ( 𝐹 : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐴  ·o  𝐵 )  →  ◡ 𝐹 : ( 𝐴  ·o  𝐵 ) –1-1-onto→ ( 𝐵  ×  𝐴 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ◡ 𝐹 : ( 𝐴  ·o  𝐵 ) –1-1-onto→ ( 𝐵  ×  𝐴 ) ) | 
						
							| 18 |  | f1oco | ⊢ ( ( 𝐺 : ( 𝐵  ×  𝐴 ) –1-1-onto→ ( 𝐵  ·o  𝐴 )  ∧  ◡ 𝐹 : ( 𝐴  ·o  𝐵 ) –1-1-onto→ ( 𝐵  ×  𝐴 ) )  →  ( 𝐺  ∘  ◡ 𝐹 ) : ( 𝐴  ·o  𝐵 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) | 
						
							| 19 | 14 17 18 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐺  ∘  ◡ 𝐹 ) : ( 𝐴  ·o  𝐵 ) –1-1-onto→ ( 𝐵  ·o  𝐴 ) ) |