| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limelon | ⊢ ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 2 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ·o  𝐵 )  ∈  On ) | 
						
							| 3 |  | eloni | ⊢ ( ( 𝐴  ·o  𝐵 )  ∈  On  →  Ord  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  Ord  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 5 | 1 4 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  Ord  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  Ord  ( 𝐴  ·o  𝐵 ) ) | 
						
							| 7 |  | 0ellim | ⊢ ( Lim  𝐵  →  ∅  ∈  𝐵 ) | 
						
							| 8 |  | n0i | ⊢ ( ∅  ∈  𝐵  →  ¬  𝐵  =  ∅ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( Lim  𝐵  →  ¬  𝐵  =  ∅ ) | 
						
							| 10 |  | n0i | ⊢ ( ∅  ∈  𝐴  →  ¬  𝐴  =  ∅ ) | 
						
							| 11 | 9 10 | anim12ci | ⊢ ( ( Lim  𝐵  ∧  ∅  ∈  𝐴 )  →  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) | 
						
							| 12 | 11 | adantll | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) | 
						
							| 13 | 12 | adantll | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) | 
						
							| 14 |  | om00 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ¬  ( 𝐴  ·o  𝐵 )  =  ∅  ↔  ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 16 |  | ioran | ⊢ ( ¬  ( 𝐴  =  ∅  ∨  𝐵  =  ∅ )  ↔  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) | 
						
							| 17 | 15 16 | bitrdi | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( ¬  ( 𝐴  ·o  𝐵 )  =  ∅  ↔  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) ) | 
						
							| 18 | 1 17 | sylan2 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( ¬  ( 𝐴  ·o  𝐵 )  =  ∅  ↔  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ( ¬  ( 𝐴  ·o  𝐵 )  =  ∅  ↔  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) ) | 
						
							| 20 | 13 19 | mpbird | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ¬  ( 𝐴  ·o  𝐵 )  =  ∅ ) | 
						
							| 21 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 22 | 21 | sucid | ⊢ 𝑦  ∈  suc  𝑦 | 
						
							| 23 |  | omlim | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  →  ( 𝐴  ·o  𝐵 )  =  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 ) ) | 
						
							| 24 |  | eqeq1 | ⊢ ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  ( ( 𝐴  ·o  𝐵 )  =  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 )  ↔  suc  𝑦  =  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 25 | 24 | biimpac | ⊢ ( ( ( 𝐴  ·o  𝐵 )  =  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 )  ∧  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  →  suc  𝑦  =  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 ) ) | 
						
							| 26 | 23 25 | sylan | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  →  suc  𝑦  =  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 ) ) | 
						
							| 27 | 22 26 | eleqtrid | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  →  𝑦  ∈  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 ) ) | 
						
							| 28 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐵 ( 𝐴  ·o  𝑥 )  ↔  ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 29 | 27 28 | sylib | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  →  ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  →  ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 31 |  | onelon | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 32 | 1 31 | sylan | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  On ) | 
						
							| 33 |  | onnbtwn | ⊢ ( 𝑥  ∈  On  →  ¬  ( 𝑥  ∈  𝐵  ∧  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 34 |  | imnan | ⊢ ( ( 𝑥  ∈  𝐵  →  ¬  𝐵  ∈  suc  𝑥 )  ↔  ¬  ( 𝑥  ∈  𝐵  ∧  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 35 | 33 34 | sylibr | ⊢ ( 𝑥  ∈  On  →  ( 𝑥  ∈  𝐵  →  ¬  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑥  ∈  On  →  ¬  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  On  →  ¬  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 38 | 32 37 | mpd | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ¬  𝐵  ∈  suc  𝑥 ) | 
						
							| 39 | 38 | ad5ant24 | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  ( 𝐴  ·o  𝑥 ) )  →  ¬  𝐵  ∈  suc  𝑥 ) | 
						
							| 40 |  | simpl | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  𝐵 )  →  𝐵  ∈  On ) | 
						
							| 41 | 40 31 | jca | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  𝐵 )  →  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) ) | 
						
							| 42 | 1 41 | sylan | ⊢ ( ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) ) | 
						
							| 43 | 42 | anim2i | ⊢ ( ( 𝐴  ∈  On  ∧  ( ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 )  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) ) ) | 
						
							| 44 | 43 | anassrs | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) ) ) | 
						
							| 45 |  | omcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐴  ·o  𝑥 )  ∈  On ) | 
						
							| 46 |  | eloni | ⊢ ( ( 𝐴  ·o  𝑥 )  ∈  On  →  Ord  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 47 |  | ordsucelsuc | ⊢ ( Ord  ( 𝐴  ·o  𝑥 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  ↔  suc  𝑦  ∈  suc  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝐴  ·o  𝑥 )  ∈  On  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  ↔  suc  𝑦  ∈  suc  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 49 |  | oa1suc | ⊢ ( ( 𝐴  ·o  𝑥 )  ∈  On  →  ( ( 𝐴  ·o  𝑥 )  +o  1o )  =  suc  ( 𝐴  ·o  𝑥 ) ) | 
						
							| 50 | 49 | eleq2d | ⊢ ( ( 𝐴  ·o  𝑥 )  ∈  On  →  ( suc  𝑦  ∈  ( ( 𝐴  ·o  𝑥 )  +o  1o )  ↔  suc  𝑦  ∈  suc  ( 𝐴  ·o  𝑥 ) ) ) | 
						
							| 51 | 48 50 | bitr4d | ⊢ ( ( 𝐴  ·o  𝑥 )  ∈  On  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  ↔  suc  𝑦  ∈  ( ( 𝐴  ·o  𝑥 )  +o  1o ) ) ) | 
						
							| 52 | 45 51 | syl | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  ↔  suc  𝑦  ∈  ( ( 𝐴  ·o  𝑥 )  +o  1o ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  ↔  suc  𝑦  ∈  ( ( 𝐴  ·o  𝑥 )  +o  1o ) ) ) | 
						
							| 54 |  | eloni | ⊢ ( 𝐴  ∈  On  →  Ord  𝐴 ) | 
						
							| 55 |  | ordgt0ge1 | ⊢ ( Ord  𝐴  →  ( ∅  ∈  𝐴  ↔  1o  ⊆  𝐴 ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝐴  ∈  On  →  ( ∅  ∈  𝐴  ↔  1o  ⊆  𝐴 ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( ∅  ∈  𝐴  ↔  1o  ⊆  𝐴 ) ) | 
						
							| 58 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 59 |  | oaword | ⊢ ( ( 1o  ∈  On  ∧  𝐴  ∈  On  ∧  ( 𝐴  ·o  𝑥 )  ∈  On )  →  ( 1o  ⊆  𝐴  ↔  ( ( 𝐴  ·o  𝑥 )  +o  1o )  ⊆  ( ( 𝐴  ·o  𝑥 )  +o  𝐴 ) ) ) | 
						
							| 60 | 58 59 | mp3an1 | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐴  ·o  𝑥 )  ∈  On )  →  ( 1o  ⊆  𝐴  ↔  ( ( 𝐴  ·o  𝑥 )  +o  1o )  ⊆  ( ( 𝐴  ·o  𝑥 )  +o  𝐴 ) ) ) | 
						
							| 61 | 45 60 | syldan | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 1o  ⊆  𝐴  ↔  ( ( 𝐴  ·o  𝑥 )  +o  1o )  ⊆  ( ( 𝐴  ·o  𝑥 )  +o  𝐴 ) ) ) | 
						
							| 62 | 57 61 | bitrd | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( ∅  ∈  𝐴  ↔  ( ( 𝐴  ·o  𝑥 )  +o  1o )  ⊆  ( ( 𝐴  ·o  𝑥 )  +o  𝐴 ) ) ) | 
						
							| 63 | 62 | biimpa | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ·o  𝑥 )  +o  1o )  ⊆  ( ( 𝐴  ·o  𝑥 )  +o  𝐴 ) ) | 
						
							| 64 |  | omsuc | ⊢ ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝐴  ·o  suc  𝑥 )  =  ( ( 𝐴  ·o  𝑥 )  +o  𝐴 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝐴  ·o  suc  𝑥 )  =  ( ( 𝐴  ·o  𝑥 )  +o  𝐴 ) ) | 
						
							| 66 | 63 65 | sseqtrrd | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ·o  𝑥 )  +o  1o )  ⊆  ( 𝐴  ·o  suc  𝑥 ) ) | 
						
							| 67 | 66 | sseld | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( suc  𝑦  ∈  ( ( 𝐴  ·o  𝑥 )  +o  1o )  →  suc  𝑦  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) | 
						
							| 68 | 53 67 | sylbid | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  suc  𝑦  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) | 
						
							| 69 |  | eleq1 | ⊢ ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  ( ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 )  ↔  suc  𝑦  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) | 
						
							| 70 | 69 | biimprd | ⊢ ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  ( suc  𝑦  ∈  ( 𝐴  ·o  suc  𝑥 )  →  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) | 
						
							| 71 | 68 70 | syl9 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) ) | 
						
							| 72 | 71 | com23 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝑥  ∈  On )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) ) | 
						
							| 73 | 72 | adantlrl | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) ) | 
						
							| 74 |  | onsucb | ⊢ ( 𝑥  ∈  On  ↔  suc  𝑥  ∈  On ) | 
						
							| 75 |  | omord | ⊢ ( ( 𝐵  ∈  On  ∧  suc  𝑥  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐵  ∈  suc  𝑥  ∧  ∅  ∈  𝐴 )  ↔  ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 ) ) ) | 
						
							| 76 |  | simpl | ⊢ ( ( 𝐵  ∈  suc  𝑥  ∧  ∅  ∈  𝐴 )  →  𝐵  ∈  suc  𝑥 ) | 
						
							| 77 | 75 76 | biimtrrdi | ⊢ ( ( 𝐵  ∈  On  ∧  suc  𝑥  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 )  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 78 | 74 77 | syl3an2b | ⊢ ( ( 𝐵  ∈  On  ∧  𝑥  ∈  On  ∧  𝐴  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 )  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 79 | 78 | 3comr | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝑥  ∈  On )  →  ( ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 )  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 80 | 79 | 3expb | ⊢ ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) )  →  ( ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 )  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( ( 𝐴  ·o  𝐵 )  ∈  ( 𝐴  ·o  suc  𝑥 )  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 82 | 73 81 | syl6d | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  On  ∧  𝑥  ∈  On ) )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  𝐵  ∈  suc  𝑥 ) ) ) | 
						
							| 83 | 44 82 | sylan | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  𝑥  ∈  𝐵 )  ∧  ∅  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  𝐵  ∈  suc  𝑥 ) ) ) | 
						
							| 84 | 83 | an32s | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  𝐵  ∈  suc  𝑥 ) ) ) | 
						
							| 85 | 84 | imp | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  ( 𝐴  ·o  𝑥 ) )  →  ( ( 𝐴  ·o  𝐵 )  =  suc  𝑦  →  𝐵  ∈  suc  𝑥 ) ) | 
						
							| 86 | 39 85 | mtod | ⊢ ( ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  ( 𝐴  ·o  𝑥 ) )  →  ¬  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) | 
						
							| 87 | 86 | rexlimdva2 | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ( ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ¬  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  →  ( ∃ 𝑥  ∈  𝐵 𝑦  ∈  ( 𝐴  ·o  𝑥 )  →  ¬  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 89 | 30 88 | mpd | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  →  ¬  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) | 
						
							| 90 | 89 | pm2.01da | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ¬  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  ∧  𝑦  ∈  On )  →  ¬  ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) | 
						
							| 92 | 91 | nrexdv | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ¬  ∃ 𝑦  ∈  On ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) | 
						
							| 93 |  | ioran | ⊢ ( ¬  ( ( 𝐴  ·o  𝐵 )  =  ∅  ∨  ∃ 𝑦  ∈  On ( 𝐴  ·o  𝐵 )  =  suc  𝑦 )  ↔  ( ¬  ( 𝐴  ·o  𝐵 )  =  ∅  ∧  ¬  ∃ 𝑦  ∈  On ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 94 | 20 92 93 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  ¬  ( ( 𝐴  ·o  𝐵 )  =  ∅  ∨  ∃ 𝑦  ∈  On ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) ) | 
						
							| 95 |  | dflim3 | ⊢ ( Lim  ( 𝐴  ·o  𝐵 )  ↔  ( Ord  ( 𝐴  ·o  𝐵 )  ∧  ¬  ( ( 𝐴  ·o  𝐵 )  =  ∅  ∨  ∃ 𝑦  ∈  On ( 𝐴  ·o  𝐵 )  =  suc  𝑦 ) ) ) | 
						
							| 96 | 6 94 95 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  On  ∧  ( 𝐵  ∈  𝐶  ∧  Lim  𝐵 ) )  ∧  ∅  ∈  𝐴 )  →  Lim  ( 𝐴  ·o  𝐵 ) ) |