Step |
Hyp |
Ref |
Expression |
1 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
2 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
3 |
|
eloni |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → Ord ( 𝐴 ·o 𝐵 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐴 ·o 𝐵 ) ) |
5 |
1 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Ord ( 𝐴 ·o 𝐵 ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Ord ( 𝐴 ·o 𝐵 ) ) |
7 |
|
0ellim |
⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) |
8 |
|
n0i |
⊢ ( ∅ ∈ 𝐵 → ¬ 𝐵 = ∅ ) |
9 |
7 8
|
syl |
⊢ ( Lim 𝐵 → ¬ 𝐵 = ∅ ) |
10 |
|
n0i |
⊢ ( ∅ ∈ 𝐴 → ¬ 𝐴 = ∅ ) |
11 |
9 10
|
anim12ci |
⊢ ( ( Lim 𝐵 ∧ ∅ ∈ 𝐴 ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
12 |
11
|
adantll |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
13 |
12
|
adantll |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
14 |
|
om00 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
15 |
14
|
notbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) ) |
16 |
|
ioran |
⊢ ( ¬ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) |
17 |
15 16
|
bitrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
18 |
1 17
|
sylan2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ↔ ( ¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅ ) ) ) |
20 |
13 19
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ( 𝐴 ·o 𝐵 ) = ∅ ) |
21 |
|
vex |
⊢ 𝑦 ∈ V |
22 |
21
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
23 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ·o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) |
24 |
|
eqeq1 |
⊢ ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) ) |
25 |
24
|
biimpac |
⊢ ( ( ( 𝐴 ·o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) |
26 |
23 25
|
sylan |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) |
27 |
22 26
|
eleqtrid |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) |
28 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) |
29 |
27 28
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) |
30 |
29
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) |
31 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
32 |
1 31
|
sylan |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
33 |
|
onnbtwn |
⊢ ( 𝑥 ∈ On → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) |
34 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥 ) ) |
35 |
33 34
|
sylibr |
⊢ ( 𝑥 ∈ On → ( 𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥 ) ) |
36 |
35
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥 ) ) |
38 |
32 37
|
mpd |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝐵 ∈ suc 𝑥 ) |
39 |
38
|
ad5ant24 |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) → ¬ 𝐵 ∈ suc 𝑥 ) |
40 |
|
simpl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ On ) |
41 |
40 31
|
jca |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) |
42 |
1 41
|
sylan |
⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) |
43 |
42
|
anim2i |
⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ) |
44 |
43
|
anassrs |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ) |
45 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
46 |
|
eloni |
⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → Ord ( 𝐴 ·o 𝑥 ) ) |
47 |
|
ordsucelsuc |
⊢ ( Ord ( 𝐴 ·o 𝑥 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 ·o 𝑥 ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ suc ( 𝐴 ·o 𝑥 ) ) ) |
49 |
|
oa1suc |
⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( ( 𝐴 ·o 𝑥 ) +o 1o ) = suc ( 𝐴 ·o 𝑥 ) ) |
50 |
49
|
eleq2d |
⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ↔ suc 𝑦 ∈ suc ( 𝐴 ·o 𝑥 ) ) ) |
51 |
48 50
|
bitr4d |
⊢ ( ( 𝐴 ·o 𝑥 ) ∈ On → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ) ) |
52 |
45 51
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ↔ suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ) ) |
54 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
55 |
|
ordgt0ge1 |
⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
56 |
54 55
|
syl |
⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴 ) ) |
58 |
|
1on |
⊢ 1o ∈ On |
59 |
|
oaword |
⊢ ( ( 1o ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 1o ⊆ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
60 |
58 59
|
mp3an1 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 1o ⊆ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
61 |
45 60
|
syldan |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 1o ⊆ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
62 |
57 61
|
bitrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
63 |
62
|
biimpa |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
64 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
66 |
63 65
|
sseqtrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑥 ) +o 1o ) ⊆ ( 𝐴 ·o suc 𝑥 ) ) |
67 |
66
|
sseld |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( suc 𝑦 ∈ ( ( 𝐴 ·o 𝑥 ) +o 1o ) → suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
68 |
53 67
|
sylbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
69 |
|
eleq1 |
⊢ ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ↔ suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
70 |
69
|
biimprd |
⊢ ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( suc 𝑦 ∈ ( 𝐴 ·o suc 𝑥 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
71 |
68 70
|
syl9 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) ) |
72 |
71
|
com23 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) ) |
73 |
72
|
adantlrl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) ) |
74 |
|
sucelon |
⊢ ( 𝑥 ∈ On ↔ suc 𝑥 ∈ On ) |
75 |
|
omord |
⊢ ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴 ) ↔ ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) ) |
76 |
|
simpl |
⊢ ( ( 𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴 ) → 𝐵 ∈ suc 𝑥 ) |
77 |
75 76
|
syl6bir |
⊢ ( ( 𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
78 |
74 77
|
syl3an2b |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
79 |
78
|
3comr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
80 |
79
|
3expb |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
81 |
80
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) ∈ ( 𝐴 ·o suc 𝑥 ) → 𝐵 ∈ suc 𝑥 ) ) |
82 |
73 81
|
syl6d |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) |
83 |
44 82
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) |
84 |
83
|
an32s |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) ) |
85 |
84
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) → ( ( 𝐴 ·o 𝐵 ) = suc 𝑦 → 𝐵 ∈ suc 𝑥 ) ) |
86 |
39 85
|
mtod |
⊢ ( ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 ·o 𝑥 ) ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
87 |
86
|
rexlimdva2 |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) |
88 |
87
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ ( 𝐴 ·o 𝑥 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) |
89 |
30 88
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
90 |
89
|
pm2.01da |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
91 |
90
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑦 ∈ On ) → ¬ ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
92 |
91
|
nrexdv |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) |
93 |
|
ioran |
⊢ ( ¬ ( ( 𝐴 ·o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ↔ ( ¬ ( 𝐴 ·o 𝐵 ) = ∅ ∧ ¬ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) |
94 |
20 92 93
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ¬ ( ( 𝐴 ·o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) |
95 |
|
dflim3 |
⊢ ( Lim ( 𝐴 ·o 𝐵 ) ↔ ( Ord ( 𝐴 ·o 𝐵 ) ∧ ¬ ( ( 𝐴 ·o 𝐵 ) = ∅ ∨ ∃ 𝑦 ∈ On ( 𝐴 ·o 𝐵 ) = suc 𝑦 ) ) ) |
96 |
6 94 95
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝐵 ) ) |