Step |
Hyp |
Ref |
Expression |
1 |
|
omllaw.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
omllaw.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
omllaw.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
omllaw.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
omllaw.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
6 |
1 2 3 4 5
|
isoml |
⊢ ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐾 ∈ OML → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) |
9 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ 𝑋 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) = ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
12 |
9 11
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ↔ 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
14 |
8 13
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ↔ ( 𝑋 ≤ 𝑦 → 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌 ) ) |
16 |
|
id |
⊢ ( 𝑦 = 𝑌 → 𝑦 = 𝑌 ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
19 |
16 18
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ↔ 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
20 |
15 19
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑦 → 𝑦 = ( 𝑋 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ↔ ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
21 |
14 20
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
22 |
7 21
|
syl5com |
⊢ ( 𝐾 ∈ OML → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
23 |
22
|
3impib |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |