| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							omllaw.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							omllaw.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							omllaw.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							omllaw.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							omllaw.o | 
							⊢  ⊥   =  ( oc ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							isoml | 
							⊢ ( 𝐾  ∈  OML  ↔  ( 𝐾  ∈  OL  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑦  =  ( 𝑥  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑥 ) ) ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprbi | 
							⊢ ( 𝐾  ∈  OML  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑦  =  ( 𝑥  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ≤  𝑦  ↔  𝑋  ≤  𝑦 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 )  | 
						
						
							| 10 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝑋  →  (  ⊥  ‘ 𝑥 )  =  (  ⊥  ‘ 𝑋 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑦  ∧  (  ⊥  ‘ 𝑥 ) )  =  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑥 ) ) )  =  ( 𝑋  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑦  =  ( 𝑥  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑥 ) ) )  ↔  𝑦  =  ( 𝑋  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  ≤  𝑦  →  𝑦  =  ( 𝑥  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑥 ) ) ) )  ↔  ( 𝑋  ≤  𝑦  →  𝑦  =  ( 𝑋  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑋  ≤  𝑦  ↔  𝑋  ≤  𝑌 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  =  𝑌  →  𝑦  =  𝑌 )  | 
						
						
							| 17 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) )  =  ( 𝑌  ∧  (  ⊥  ‘ 𝑋 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑋  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) ) )  =  ( 𝑋  ∨  ( 𝑌  ∧  (  ⊥  ‘ 𝑋 ) ) ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							eqeq12d | 
							⊢ ( 𝑦  =  𝑌  →  ( 𝑦  =  ( 𝑋  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) ) )  ↔  𝑌  =  ( 𝑋  ∨  ( 𝑌  ∧  (  ⊥  ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  𝑌  →  ( ( 𝑋  ≤  𝑦  →  𝑦  =  ( 𝑋  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑋 ) ) ) )  ↔  ( 𝑋  ≤  𝑌  →  𝑌  =  ( 𝑋  ∨  ( 𝑌  ∧  (  ⊥  ‘ 𝑋 ) ) ) ) ) )  | 
						
						
							| 21 | 
							
								14 20
							 | 
							rspc2v | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ≤  𝑦  →  𝑦  =  ( 𝑥  ∨  ( 𝑦  ∧  (  ⊥  ‘ 𝑥 ) ) ) )  →  ( 𝑋  ≤  𝑌  →  𝑌  =  ( 𝑋  ∨  ( 𝑌  ∧  (  ⊥  ‘ 𝑋 ) ) ) ) ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							syl5com | 
							⊢ ( 𝐾  ∈  OML  →  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  𝑌  =  ( 𝑋  ∨  ( 𝑌  ∧  (  ⊥  ‘ 𝑋 ) ) ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							3impib | 
							⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  𝑌  =  ( 𝑋  ∨  ( 𝑌  ∧  (  ⊥  ‘ 𝑋 ) ) ) ) )  |