Step |
Hyp |
Ref |
Expression |
1 |
|
omllaw.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
omllaw.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
omllaw.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
omllaw.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
omllaw.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
6 |
1 2 3 4 5
|
omllaw |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
7 |
|
eqcom |
⊢ ( ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = 𝑌 ↔ 𝑌 = ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) |
8 |
|
omllat |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
10 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
11 |
1 5
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
14 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
15 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
16 |
9 13 14 15
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) = ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
18 |
17
|
eqeq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 = ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ↔ 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
19 |
7 18
|
syl5bb |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = 𝑌 ↔ 𝑌 = ( 𝑋 ∨ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
20 |
6 19
|
sylibrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) = 𝑌 ) ) |