| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omllaw4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
omllaw4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
omllaw4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
omllaw4.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 5 |
|
simp1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OML ) |
| 6 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 9 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 11 |
|
simp2 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 12 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 13 |
7 11 12
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 15 |
1 2 14 3 4
|
omllaw |
⊢ ( ( 𝐾 ∈ OML ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 16 |
5 10 13 15
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 17 |
1 2 4
|
oplecon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| 18 |
6 17
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| 19 |
|
omllat |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) |
| 20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 21 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 22 |
20 13 8 21
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 23 |
1 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∈ 𝐵 ) |
| 24 |
7 22 23
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∈ 𝐵 ) |
| 25 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 26 |
20 24 8 25
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ∈ 𝐵 ) |
| 27 |
1 4
|
opcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) ) ) |
| 28 |
7 26 11 27
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) ) ) |
| 29 |
1 14
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) |
| 30 |
20 22 10 29
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) |
| 31 |
|
omlol |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OL ) |
| 33 |
1 14 3 4
|
oldmm2 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) |
| 34 |
32 22 8 33
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) = ( ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ( join ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) |
| 35 |
1 4
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 36 |
7 8 35
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 37 |
36
|
oveq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) |
| 38 |
37
|
oveq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ) |
| 39 |
30 34 38
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) ) ↔ ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 41 |
28 40
|
bitrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) = ( ( ⊥ ‘ 𝑌 ) ( join ‘ 𝐾 ) ( ( ⊥ ‘ 𝑋 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) ) ) |
| 42 |
16 18 41
|
3imtr4d |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∧ 𝑌 ) ) ∧ 𝑌 ) = 𝑋 ) ) |