Step |
Hyp |
Ref |
Expression |
1 |
|
omllaw5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
omllaw5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
omllaw5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
omllaw5.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
5 |
|
simp1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OML ) |
6 |
|
simp2 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
7 |
|
omllat |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) |
8 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
9 |
7 8
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
10 |
5 6 9
|
3jca |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
1 11 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
13 |
7 12
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) ) |
14 |
1 11 2 3 4
|
omllaw2N |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( 𝑋 ∨ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) ) |
15 |
10 13 14
|
sylc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ ( ( ⊥ ‘ 𝑋 ) ∧ ( 𝑋 ∨ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |