Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | omlol | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
2 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
3 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
4 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
5 | eqid | ⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) | |
6 | 1 2 3 4 5 | isoml | ⊢ ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ) ) ) |
7 | 6 | simplbi | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) |