Metamath Proof Explorer


Theorem omlsi

Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses omls.1 𝐴C
omls.2 𝐵S
Assertion omlsi ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 omls.1 𝐴C
2 omls.2 𝐵S
3 eqeq1 ( 𝐴 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( 𝐴 = 𝐵 ↔ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) = 𝐵 ) )
4 eqeq2 ( 𝐵 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) = 𝐵 ↔ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ) )
5 h0elch 0C
6 1 5 ifcli if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ∈ C
7 h0elsh 0S
8 2 7 ifcli if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∈ S
9 sseq1 ( 𝐴 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( 𝐴𝐵 ↔ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 𝐵 ) )
10 fveq2 ( 𝐴 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) )
11 10 ineq2d ( 𝐴 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) )
12 11 eqeq1d ( 𝐴 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ↔ ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) )
13 9 12 anbi12d ( 𝐴 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) ↔ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) ) )
14 sseq2 ( 𝐵 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 𝐵 ↔ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ) )
15 ineq1 ( 𝐵 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) )
16 15 eqeq1d ( 𝐵 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ↔ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) )
17 14 16 anbi12d ( 𝐵 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) ↔ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∧ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) ) )
18 sseq1 ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( 0 ⊆ 0 ↔ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 0 ) )
19 fveq2 ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( ⊥ ‘ 0 ) = ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) )
20 19 ineq2d ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( 0 ∩ ( ⊥ ‘ 0 ) ) = ( 0 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) )
21 20 eqeq1d ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( ( 0 ∩ ( ⊥ ‘ 0 ) ) = 0 ↔ ( 0 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) )
22 18 21 anbi12d ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) → ( ( 0 ⊆ 0 ∧ ( 0 ∩ ( ⊥ ‘ 0 ) ) = 0 ) ↔ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 0 ∧ ( 0 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) ) )
23 sseq2 ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 0 ↔ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ) )
24 ineq1 ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( 0 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) )
25 24 eqeq1d ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( ( 0 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ↔ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) )
26 23 25 anbi12d ( 0 = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) → ( ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ 0 ∧ ( 0 ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) ↔ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∧ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 ) ) )
27 ssid 0 ⊆ 0
28 ocin ( 0S → ( 0 ∩ ( ⊥ ‘ 0 ) ) = 0 )
29 7 28 ax-mp ( 0 ∩ ( ⊥ ‘ 0 ) ) = 0
30 27 29 pm3.2i ( 0 ⊆ 0 ∧ ( 0 ∩ ( ⊥ ‘ 0 ) ) = 0 )
31 13 17 22 26 30 elimhyp2v ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∧ ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0 )
32 31 simpli if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ⊆ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 )
33 31 simpri ( if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) ) ) = 0
34 6 8 32 33 omlsii if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐴 , 0 ) = if ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) , 𝐵 , 0 )
35 3 4 34 dedth2v ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) → 𝐴 = 𝐵 )