Step |
Hyp |
Ref |
Expression |
1 |
|
omlsi.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
omlsi.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
omlsi.3 |
⊢ 𝐴 ⊆ 𝐵 |
4 |
|
omlsi.4 |
⊢ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0ℋ |
5 |
2
|
sheli |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ ) |
6 |
1 5
|
pjhthlem2 |
⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑥 = if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑥 = if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) → ( 𝑥 ∈ 𝐴 ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) |
9 |
7 8
|
imbi12d |
⊢ ( 𝑥 = if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) → ( ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ↔ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑦 = if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) → ( 𝑦 +ℎ 𝑧 ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑦 = if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) → ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) ) ) |
12 |
11
|
imbi1d |
⊢ ( 𝑦 = if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) → ( ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( 𝑦 +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ↔ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) → ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) → ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) ↔ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) → ( ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ 𝑧 ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ↔ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) ) ) |
16 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
17 |
|
sh0 |
⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) |
18 |
2 17
|
ax-mp |
⊢ 0ℎ ∈ 𝐵 |
19 |
18
|
elimel |
⊢ if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐵 |
20 |
|
ch0 |
⊢ ( 𝐴 ∈ Cℋ → 0ℎ ∈ 𝐴 ) |
21 |
1 20
|
ax-mp |
⊢ 0ℎ ∈ 𝐴 |
22 |
21
|
elimel |
⊢ if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) ∈ 𝐴 |
23 |
|
shocsh |
⊢ ( 𝐴 ∈ Sℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) |
24 |
16 23
|
ax-mp |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Sℋ |
25 |
|
sh0 |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → 0ℎ ∈ ( ⊥ ‘ 𝐴 ) ) |
26 |
24 25
|
ax-mp |
⊢ 0ℎ ∈ ( ⊥ ‘ 𝐴 ) |
27 |
26
|
elimel |
⊢ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ∈ ( ⊥ ‘ 𝐴 ) |
28 |
16 2 3 4 19 22 27
|
omlsilem |
⊢ ( if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) = ( if ( 𝑦 ∈ 𝐴 , 𝑦 , 0ℎ ) +ℎ if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0ℎ ) ) → if ( 𝑥 ∈ 𝐵 , 𝑥 , 0ℎ ) ∈ 𝐴 ) |
29 |
9 12 15 28
|
dedth3h |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
30 |
29
|
3expia |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) ) |
31 |
30
|
rexlimdv |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
32 |
31
|
rexlimdva |
⊢ ( 𝑥 ∈ 𝐵 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
33 |
6 32
|
mpd |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) |
34 |
33
|
ssriv |
⊢ 𝐵 ⊆ 𝐴 |
35 |
3 34
|
eqssi |
⊢ 𝐴 = 𝐵 |