Metamath Proof Explorer


Theorem omlsii

Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses omlsi.1 𝐴C
omlsi.2 𝐵S
omlsi.3 𝐴𝐵
omlsi.4 ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0
Assertion omlsii 𝐴 = 𝐵

Proof

Step Hyp Ref Expression
1 omlsi.1 𝐴C
2 omlsi.2 𝐵S
3 omlsi.3 𝐴𝐵
4 omlsi.4 ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0
5 2 sheli ( 𝑥𝐵𝑥 ∈ ℋ )
6 1 5 pjhthlem2 ( 𝑥𝐵 → ∃ 𝑦𝐴𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 + 𝑧 ) )
7 eqeq1 ( 𝑥 = if ( 𝑥𝐵 , 𝑥 , 0 ) → ( 𝑥 = ( 𝑦 + 𝑧 ) ↔ if ( 𝑥𝐵 , 𝑥 , 0 ) = ( 𝑦 + 𝑧 ) ) )
8 eleq1 ( 𝑥 = if ( 𝑥𝐵 , 𝑥 , 0 ) → ( 𝑥𝐴 ↔ if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐴 ) )
9 7 8 imbi12d ( 𝑥 = if ( 𝑥𝐵 , 𝑥 , 0 ) → ( ( 𝑥 = ( 𝑦 + 𝑧 ) → 𝑥𝐴 ) ↔ ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( 𝑦 + 𝑧 ) → if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐴 ) ) )
10 oveq1 ( 𝑦 = if ( 𝑦𝐴 , 𝑦 , 0 ) → ( 𝑦 + 𝑧 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + 𝑧 ) )
11 10 eqeq2d ( 𝑦 = if ( 𝑦𝐴 , 𝑦 , 0 ) → ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( 𝑦 + 𝑧 ) ↔ if ( 𝑥𝐵 , 𝑥 , 0 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + 𝑧 ) ) )
12 11 imbi1d ( 𝑦 = if ( 𝑦𝐴 , 𝑦 , 0 ) → ( ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( 𝑦 + 𝑧 ) → if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐴 ) ↔ ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + 𝑧 ) → if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐴 ) ) )
13 oveq2 ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) → ( if ( 𝑦𝐴 , 𝑦 , 0 ) + 𝑧 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) ) )
14 13 eqeq2d ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) → ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + 𝑧 ) ↔ if ( 𝑥𝐵 , 𝑥 , 0 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) ) ) )
15 14 imbi1d ( 𝑧 = if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) → ( ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + 𝑧 ) → if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐴 ) ↔ ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) ) → if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐴 ) ) )
16 1 chshii 𝐴S
17 sh0 ( 𝐵S → 0𝐵 )
18 2 17 ax-mp 0𝐵
19 18 elimel if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐵
20 ch0 ( 𝐴C → 0𝐴 )
21 1 20 ax-mp 0𝐴
22 21 elimel if ( 𝑦𝐴 , 𝑦 , 0 ) ∈ 𝐴
23 shocsh ( 𝐴S → ( ⊥ ‘ 𝐴 ) ∈ S )
24 16 23 ax-mp ( ⊥ ‘ 𝐴 ) ∈ S
25 sh0 ( ( ⊥ ‘ 𝐴 ) ∈ S → 0 ∈ ( ⊥ ‘ 𝐴 ) )
26 24 25 ax-mp 0 ∈ ( ⊥ ‘ 𝐴 )
27 26 elimel if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) ∈ ( ⊥ ‘ 𝐴 )
28 16 2 3 4 19 22 27 omlsilem ( if ( 𝑥𝐵 , 𝑥 , 0 ) = ( if ( 𝑦𝐴 , 𝑦 , 0 ) + if ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) , 𝑧 , 0 ) ) → if ( 𝑥𝐵 , 𝑥 , 0 ) ∈ 𝐴 )
29 9 12 15 28 dedth3h ( ( 𝑥𝐵𝑦𝐴𝑧 ∈ ( ⊥ ‘ 𝐴 ) ) → ( 𝑥 = ( 𝑦 + 𝑧 ) → 𝑥𝐴 ) )
30 29 3expia ( ( 𝑥𝐵𝑦𝐴 ) → ( 𝑧 ∈ ( ⊥ ‘ 𝐴 ) → ( 𝑥 = ( 𝑦 + 𝑧 ) → 𝑥𝐴 ) ) )
31 30 rexlimdv ( ( 𝑥𝐵𝑦𝐴 ) → ( ∃ 𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 + 𝑧 ) → 𝑥𝐴 ) )
32 31 rexlimdva ( 𝑥𝐵 → ( ∃ 𝑦𝐴𝑧 ∈ ( ⊥ ‘ 𝐴 ) 𝑥 = ( 𝑦 + 𝑧 ) → 𝑥𝐴 ) )
33 6 32 mpd ( 𝑥𝐵𝑥𝐴 )
34 33 ssriv 𝐵𝐴
35 3 34 eqssi 𝐴 = 𝐵