| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							omlsilem.1 | 
							⊢ 𝐺  ∈   Sℋ   | 
						
						
							| 2 | 
							
								
							 | 
							omlsilem.2 | 
							⊢ 𝐻  ∈   Sℋ   | 
						
						
							| 3 | 
							
								
							 | 
							omlsilem.3 | 
							⊢ 𝐺  ⊆  𝐻  | 
						
						
							| 4 | 
							
								
							 | 
							omlsilem.4 | 
							⊢ ( 𝐻  ∩  ( ⊥ ‘ 𝐺 ) )  =  0ℋ  | 
						
						
							| 5 | 
							
								
							 | 
							omlsilem.5 | 
							⊢ 𝐴  ∈  𝐻  | 
						
						
							| 6 | 
							
								
							 | 
							omlsilem.6 | 
							⊢ 𝐵  ∈  𝐺  | 
						
						
							| 7 | 
							
								
							 | 
							omlsilem.7 | 
							⊢ 𝐶  ∈  ( ⊥ ‘ 𝐺 )  | 
						
						
							| 8 | 
							
								2 5
							 | 
							shelii | 
							⊢ 𝐴  ∈   ℋ  | 
						
						
							| 9 | 
							
								1 6
							 | 
							shelii | 
							⊢ 𝐵  ∈   ℋ  | 
						
						
							| 10 | 
							
								
							 | 
							shocss | 
							⊢ ( 𝐺  ∈   Sℋ   →  ( ⊥ ‘ 𝐺 )  ⊆   ℋ )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							ax-mp | 
							⊢ ( ⊥ ‘ 𝐺 )  ⊆   ℋ  | 
						
						
							| 12 | 
							
								11 7
							 | 
							sselii | 
							⊢ 𝐶  ∈   ℋ  | 
						
						
							| 13 | 
							
								8 9 12
							 | 
							hvsubaddi | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  𝐶  ↔  ( 𝐵  +ℎ  𝐶 )  =  𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝐵  +ℎ  𝐶 )  =  𝐴  ↔  𝐴  =  ( 𝐵  +ℎ  𝐶 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							bitri | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  𝐶  ↔  𝐴  =  ( 𝐵  +ℎ  𝐶 ) )  | 
						
						
							| 16 | 
							
								3 6
							 | 
							sselii | 
							⊢ 𝐵  ∈  𝐻  | 
						
						
							| 17 | 
							
								
							 | 
							shsubcl | 
							⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝐴  ∈  𝐻  ∧  𝐵  ∈  𝐻 )  →  ( 𝐴  −ℎ  𝐵 )  ∈  𝐻 )  | 
						
						
							| 18 | 
							
								2 5 16 17
							 | 
							mp3an | 
							⊢ ( 𝐴  −ℎ  𝐵 )  ∈  𝐻  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1 | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  𝐶  →  ( ( 𝐴  −ℎ  𝐵 )  ∈  𝐻  ↔  𝐶  ∈  𝐻 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							mpbii | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  𝐶  →  𝐶  ∈  𝐻 )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							sylbir | 
							⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  →  𝐶  ∈  𝐻 )  | 
						
						
							| 22 | 
							
								4
							 | 
							eleq2i | 
							⊢ ( 𝐶  ∈  ( 𝐻  ∩  ( ⊥ ‘ 𝐺 ) )  ↔  𝐶  ∈  0ℋ )  | 
						
						
							| 23 | 
							
								
							 | 
							elin | 
							⊢ ( 𝐶  ∈  ( 𝐻  ∩  ( ⊥ ‘ 𝐺 ) )  ↔  ( 𝐶  ∈  𝐻  ∧  𝐶  ∈  ( ⊥ ‘ 𝐺 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							elch0 | 
							⊢ ( 𝐶  ∈  0ℋ  ↔  𝐶  =  0ℎ )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							3bitr3i | 
							⊢ ( ( 𝐶  ∈  𝐻  ∧  𝐶  ∈  ( ⊥ ‘ 𝐺 ) )  ↔  𝐶  =  0ℎ )  | 
						
						
							| 26 | 
							
								21 7 25
							 | 
							sylanblc | 
							⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  →  𝐶  =  0ℎ )  | 
						
						
							| 27 | 
							
								26
							 | 
							oveq2d | 
							⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  →  ( 𝐵  +ℎ  𝐶 )  =  ( 𝐵  +ℎ  0ℎ ) )  | 
						
						
							| 28 | 
							
								
							 | 
							ax-hvaddid | 
							⊢ ( 𝐵  ∈   ℋ  →  ( 𝐵  +ℎ  0ℎ )  =  𝐵 )  | 
						
						
							| 29 | 
							
								9 28
							 | 
							ax-mp | 
							⊢ ( 𝐵  +ℎ  0ℎ )  =  𝐵  | 
						
						
							| 30 | 
							
								27 29
							 | 
							eqtrdi | 
							⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  →  ( 𝐵  +ℎ  𝐶 )  =  𝐵 )  | 
						
						
							| 31 | 
							
								30 6
							 | 
							eqeltrdi | 
							⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  →  ( 𝐵  +ℎ  𝐶 )  ∈  𝐺 )  | 
						
						
							| 32 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  →  ( 𝐴  ∈  𝐺  ↔  ( 𝐵  +ℎ  𝐶 )  ∈  𝐺 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							mpbird | 
							⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  →  𝐴  ∈  𝐺 )  |