Metamath Proof Explorer


Theorem omoeALTV

Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion omoeALTV ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ( 𝐴𝐵 ) ∈ Even )

Proof

Step Hyp Ref Expression
1 oddz ( 𝐴 ∈ Odd → 𝐴 ∈ ℤ )
2 1 zcnd ( 𝐴 ∈ Odd → 𝐴 ∈ ℂ )
3 oddz ( 𝐵 ∈ Odd → 𝐵 ∈ ℤ )
4 3 zcnd ( 𝐵 ∈ Odd → 𝐵 ∈ ℂ )
5 negsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
6 2 4 5 syl2an ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
7 onego ( 𝐵 ∈ Odd → - 𝐵 ∈ Odd )
8 opoeALTV ( ( 𝐴 ∈ Odd ∧ - 𝐵 ∈ Odd ) → ( 𝐴 + - 𝐵 ) ∈ Even )
9 7 8 sylan2 ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ( 𝐴 + - 𝐵 ) ∈ Even )
10 6 9 eqeltrrd ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ( 𝐴𝐵 ) ∈ Even )