| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( 𝐴 +o 𝐵 ) = ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) |
| 2 |
1 1
|
oveq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) = ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) ) |
| 3 |
2
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) +o 𝐵 ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) ) |
| 5 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( 𝐴 = 𝐶 ↔ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 7 |
4 6
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ω , 𝐴 , ∅ ) → ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) = ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) |
| 9 |
8 8
|
oveq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) = ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) ) |
| 10 |
|
id |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) |
| 11 |
9 10
|
oveq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) +o 𝐵 ) = ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) ) |
| 13 |
|
eqeq1 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( 𝐵 = 𝐷 ↔ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ) |
| 14 |
13
|
anbi2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ) ) |
| 15 |
12 14
|
bibi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ω , 𝐵 , ∅ ) → ( ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ 𝐵 = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ) ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝐶 = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) → ( 𝐶 +o 𝐷 ) = ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) |
| 17 |
16 16
|
oveq12d |
⊢ ( 𝐶 = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) → ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) = ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝐶 = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) → ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) +o 𝐷 ) ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝐶 = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) → ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) +o 𝐷 ) ) ) |
| 20 |
|
eqeq2 |
⊢ ( 𝐶 = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) → ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ↔ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ) ) |
| 21 |
20
|
anbi1d |
⊢ ( 𝐶 = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) → ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ) ) |
| 22 |
19 21
|
bibi12d |
⊢ ( 𝐶 = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) → ( ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = 𝐶 ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) +o 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) = ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) |
| 24 |
23 23
|
oveq12d |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) = ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) ) |
| 25 |
|
id |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) |
| 26 |
24 25
|
oveq12d |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) +o 𝐷 ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) +o 𝐷 ) ↔ ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) ) |
| 28 |
|
eqeq2 |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → ( if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ↔ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) |
| 29 |
28
|
anbi2d |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) ) |
| 30 |
27 29
|
bibi12d |
⊢ ( 𝐷 = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) → ( ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o 𝐷 ) ) +o 𝐷 ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = 𝐷 ) ) ↔ ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) ) ) |
| 31 |
|
peano1 |
⊢ ∅ ∈ ω |
| 32 |
31
|
elimel |
⊢ if ( 𝐴 ∈ ω , 𝐴 , ∅ ) ∈ ω |
| 33 |
31
|
elimel |
⊢ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ∈ ω |
| 34 |
31
|
elimel |
⊢ if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∈ ω |
| 35 |
31
|
elimel |
⊢ if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ∈ ω |
| 36 |
32 33 34 35
|
omopthi |
⊢ ( ( ( ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ·o ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) ) +o if ( 𝐵 ∈ ω , 𝐵 , ∅ ) ) = ( ( ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ·o ( if ( 𝐶 ∈ ω , 𝐶 , ∅ ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) +o if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ↔ ( if ( 𝐴 ∈ ω , 𝐴 , ∅ ) = if ( 𝐶 ∈ ω , 𝐶 , ∅ ) ∧ if ( 𝐵 ∈ ω , 𝐵 , ∅ ) = if ( 𝐷 ∈ ω , 𝐷 , ∅ ) ) ) |
| 37 |
7 15 22 30 36
|
dedth4h |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝐶 ∈ ω ∧ 𝐷 ∈ ω ) ) → ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |