| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omopth.1 |
⊢ 𝐴 ∈ ω |
| 2 |
|
omopth.2 |
⊢ 𝐵 ∈ ω |
| 3 |
|
omopth.3 |
⊢ 𝐶 ∈ ω |
| 4 |
|
omopth.4 |
⊢ 𝐷 ∈ ω |
| 5 |
1 2
|
nnacli |
⊢ ( 𝐴 +o 𝐵 ) ∈ ω |
| 6 |
5
|
nnoni |
⊢ ( 𝐴 +o 𝐵 ) ∈ On |
| 7 |
6
|
onordi |
⊢ Ord ( 𝐴 +o 𝐵 ) |
| 8 |
3 4
|
nnacli |
⊢ ( 𝐶 +o 𝐷 ) ∈ ω |
| 9 |
8
|
nnoni |
⊢ ( 𝐶 +o 𝐷 ) ∈ On |
| 10 |
9
|
onordi |
⊢ Ord ( 𝐶 +o 𝐷 ) |
| 11 |
|
ordtri3 |
⊢ ( ( Ord ( 𝐴 +o 𝐵 ) ∧ Ord ( 𝐶 +o 𝐷 ) ) → ( ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) ) ) |
| 12 |
7 10 11
|
mp2an |
⊢ ( ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ↔ ¬ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 13 |
12
|
con2bii |
⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) ↔ ¬ ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) |
| 14 |
1 2 8 4
|
omopthlem2 |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) → ¬ ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ) |
| 15 |
|
eqcom |
⊢ ( ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ↔ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 16 |
14 15
|
sylnib |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 17 |
3 4 5 2
|
omopthlem2 |
⊢ ( ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 18 |
16 17
|
jaoi |
⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ ( 𝐶 +o 𝐷 ) ∨ ( 𝐶 +o 𝐷 ) ∈ ( 𝐴 +o 𝐵 ) ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 19 |
13 18
|
sylbir |
⊢ ( ¬ ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 20 |
19
|
con4i |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) |
| 21 |
|
id |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 22 |
20 20
|
oveq12d |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) = ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) ) |
| 23 |
22
|
oveq1d |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 24 |
21 23
|
eqtr4d |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) ) |
| 25 |
5 5
|
nnmcli |
⊢ ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω |
| 26 |
|
nnacan |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐷 ∈ ω ) → ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) ↔ 𝐵 = 𝐷 ) ) |
| 27 |
25 2 4 26
|
mp3an |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐷 ) ↔ 𝐵 = 𝐷 ) |
| 28 |
24 27
|
sylib |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → 𝐵 = 𝐷 ) |
| 29 |
28
|
oveq2d |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐶 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) |
| 30 |
20 29
|
eqtr4d |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐵 ) ) |
| 31 |
|
nnacom |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 +o 𝐴 ) = ( 𝐴 +o 𝐵 ) ) |
| 32 |
2 1 31
|
mp2an |
⊢ ( 𝐵 +o 𝐴 ) = ( 𝐴 +o 𝐵 ) |
| 33 |
|
nnacom |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 +o 𝐶 ) = ( 𝐶 +o 𝐵 ) ) |
| 34 |
2 3 33
|
mp2an |
⊢ ( 𝐵 +o 𝐶 ) = ( 𝐶 +o 𝐵 ) |
| 35 |
30 32 34
|
3eqtr4g |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐵 +o 𝐴 ) = ( 𝐵 +o 𝐶 ) ) |
| 36 |
|
nnacan |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 +o 𝐴 ) = ( 𝐵 +o 𝐶 ) ↔ 𝐴 = 𝐶 ) ) |
| 37 |
2 1 3 36
|
mp3an |
⊢ ( ( 𝐵 +o 𝐴 ) = ( 𝐵 +o 𝐶 ) ↔ 𝐴 = 𝐶 ) |
| 38 |
35 37
|
sylib |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → 𝐴 = 𝐶 ) |
| 39 |
38 28
|
jca |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 40 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 +o 𝐵 ) = ( 𝐶 +o 𝐷 ) ) |
| 41 |
40 40
|
oveq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) = ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → 𝐵 = 𝐷 ) |
| 43 |
41 42
|
oveq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ) |
| 44 |
39 43
|
impbii |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( ( ( 𝐶 +o 𝐷 ) ·o ( 𝐶 +o 𝐷 ) ) +o 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |