Step |
Hyp |
Ref |
Expression |
1 |
|
omopthlem1.1 |
⊢ 𝐴 ∈ ω |
2 |
|
omopthlem1.2 |
⊢ 𝐶 ∈ ω |
3 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
4 |
1 3
|
ax-mp |
⊢ suc 𝐴 ∈ ω |
5 |
|
nnmwordi |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( suc 𝐴 ·o 𝐶 ) ) ) |
6 |
4 2 4 5
|
mp3an |
⊢ ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( suc 𝐴 ·o 𝐶 ) ) |
7 |
|
nnmwordri |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐶 ∈ ω ) → ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o 𝐶 ) ⊆ ( 𝐶 ·o 𝐶 ) ) ) |
8 |
4 2 2 7
|
mp3an |
⊢ ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o 𝐶 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
9 |
6 8
|
sstrd |
⊢ ( suc 𝐴 ⊆ 𝐶 → ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
10 |
1
|
nnoni |
⊢ 𝐴 ∈ On |
11 |
2
|
nnoni |
⊢ 𝐶 ∈ On |
12 |
10 11
|
onsucssi |
⊢ ( 𝐴 ∈ 𝐶 ↔ suc 𝐴 ⊆ 𝐶 ) |
13 |
1 1
|
nnmcli |
⊢ ( 𝐴 ·o 𝐴 ) ∈ ω |
14 |
|
2onn |
⊢ 2o ∈ ω |
15 |
1 14
|
nnmcli |
⊢ ( 𝐴 ·o 2o ) ∈ ω |
16 |
13 15
|
nnacli |
⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ω |
17 |
16
|
nnoni |
⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ On |
18 |
2 2
|
nnmcli |
⊢ ( 𝐶 ·o 𝐶 ) ∈ ω |
19 |
18
|
nnoni |
⊢ ( 𝐶 ·o 𝐶 ) ∈ On |
20 |
17 19
|
onsucssi |
⊢ ( ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ↔ suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
21 |
4 1
|
nnmcli |
⊢ ( suc 𝐴 ·o 𝐴 ) ∈ ω |
22 |
|
nnasuc |
⊢ ( ( ( suc 𝐴 ·o 𝐴 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) ) |
23 |
21 1 22
|
mp2an |
⊢ ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) |
24 |
|
nnmsuc |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( suc 𝐴 ·o suc 𝐴 ) = ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) ) |
25 |
4 1 24
|
mp2an |
⊢ ( suc 𝐴 ·o suc 𝐴 ) = ( ( suc 𝐴 ·o 𝐴 ) +o suc 𝐴 ) |
26 |
|
nnaass |
⊢ ( ( ( 𝐴 ·o 𝐴 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 +o 𝐴 ) ) ) |
27 |
13 1 1 26
|
mp3an |
⊢ ( ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 +o 𝐴 ) ) |
28 |
|
nnmcom |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( suc 𝐴 ·o 𝐴 ) = ( 𝐴 ·o suc 𝐴 ) ) |
29 |
4 1 28
|
mp2an |
⊢ ( suc 𝐴 ·o 𝐴 ) = ( 𝐴 ·o suc 𝐴 ) |
30 |
|
nnmsuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐴 ·o suc 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) ) |
31 |
1 1 30
|
mp2an |
⊢ ( 𝐴 ·o suc 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) |
32 |
29 31
|
eqtri |
⊢ ( suc 𝐴 ·o 𝐴 ) = ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) |
33 |
32
|
oveq1i |
⊢ ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐴 ) +o 𝐴 ) +o 𝐴 ) |
34 |
|
nnm2 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) ) |
35 |
1 34
|
ax-mp |
⊢ ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) |
36 |
35
|
oveq2i |
⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 +o 𝐴 ) ) |
37 |
27 33 36
|
3eqtr4ri |
⊢ ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) |
38 |
|
suceq |
⊢ ( ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) → suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) ) |
39 |
37 38
|
ax-mp |
⊢ suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = suc ( ( suc 𝐴 ·o 𝐴 ) +o 𝐴 ) |
40 |
23 25 39
|
3eqtr4ri |
⊢ suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) = ( suc 𝐴 ·o suc 𝐴 ) |
41 |
40
|
sseq1i |
⊢ ( suc ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ⊆ ( 𝐶 ·o 𝐶 ) ↔ ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
42 |
20 41
|
bitri |
⊢ ( ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ↔ ( suc 𝐴 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝐶 ) ) |
43 |
9 12 42
|
3imtr4i |
⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝐴 ·o 𝐴 ) +o ( 𝐴 ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) |