| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omopthlem2.1 |
⊢ 𝐴 ∈ ω |
| 2 |
|
omopthlem2.2 |
⊢ 𝐵 ∈ ω |
| 3 |
|
omopthlem2.3 |
⊢ 𝐶 ∈ ω |
| 4 |
|
omopthlem2.4 |
⊢ 𝐷 ∈ ω |
| 5 |
3 3
|
nnmcli |
⊢ ( 𝐶 ·o 𝐶 ) ∈ ω |
| 6 |
5 4
|
nnacli |
⊢ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ω |
| 7 |
6
|
nnoni |
⊢ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ On |
| 8 |
7
|
onirri |
⊢ ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) |
| 9 |
|
eleq1 |
⊢ ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) → ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ↔ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) ) |
| 10 |
8 9
|
mtbii |
⊢ ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) |
| 11 |
|
nnaword1 |
⊢ ( ( ( 𝐶 ·o 𝐶 ) ∈ ω ∧ 𝐷 ∈ ω ) → ( 𝐶 ·o 𝐶 ) ⊆ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) |
| 12 |
5 4 11
|
mp2an |
⊢ ( 𝐶 ·o 𝐶 ) ⊆ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) |
| 13 |
1 2
|
nnacli |
⊢ ( 𝐴 +o 𝐵 ) ∈ ω |
| 14 |
13 1
|
nnacli |
⊢ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω |
| 15 |
|
nnaword1 |
⊢ ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω ) → 𝐵 ⊆ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) ) |
| 16 |
2 14 15
|
mp2an |
⊢ 𝐵 ⊆ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) |
| 17 |
|
nnacom |
⊢ ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) = ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) ) |
| 18 |
2 14 17
|
mp2an |
⊢ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) = ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) |
| 19 |
16 18
|
sseqtri |
⊢ 𝐵 ⊆ ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) |
| 20 |
|
nnaass |
⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) ) |
| 21 |
13 1 2 20
|
mp3an |
⊢ ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) |
| 22 |
|
nnm2 |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ ω → ( ( 𝐴 +o 𝐵 ) ·o 2o ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) ) |
| 23 |
13 22
|
ax-mp |
⊢ ( ( 𝐴 +o 𝐵 ) ·o 2o ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) |
| 24 |
21 23
|
eqtr4i |
⊢ ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) ·o 2o ) |
| 25 |
19 24
|
sseqtri |
⊢ 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) |
| 26 |
|
2onn |
⊢ 2o ∈ ω |
| 27 |
13 26
|
nnmcli |
⊢ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω |
| 28 |
13 13
|
nnmcli |
⊢ ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω |
| 29 |
|
nnawordi |
⊢ ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ) → ( 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) ) |
| 30 |
2 27 28 29
|
mp3an |
⊢ ( 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) |
| 31 |
25 30
|
ax-mp |
⊢ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) |
| 32 |
|
nnacom |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) |
| 33 |
28 2 32
|
mp2an |
⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) |
| 34 |
|
nnacom |
⊢ ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) = ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) |
| 35 |
28 27 34
|
mp2an |
⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) = ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) |
| 36 |
31 33 35
|
3sstr4i |
⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) |
| 37 |
13 3
|
omopthlem1 |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) |
| 38 |
28 2
|
nnacli |
⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ω |
| 39 |
38
|
nnoni |
⊢ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ On |
| 40 |
5
|
nnoni |
⊢ ( 𝐶 ·o 𝐶 ) ∈ On |
| 41 |
|
ontr2 |
⊢ ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ On ∧ ( 𝐶 ·o 𝐶 ) ∈ On ) → ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∧ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) ) ) |
| 42 |
39 40 41
|
mp2an |
⊢ ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∧ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) ) |
| 43 |
36 37 42
|
sylancr |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) ) |
| 44 |
12 43
|
sselid |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) |
| 45 |
10 44
|
nsyl3 |
⊢ ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ) |