Metamath Proof Explorer


Theorem omopthlem2

Description: Lemma for omopthi . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses omopthlem2.1 𝐴 ∈ ω
omopthlem2.2 𝐵 ∈ ω
omopthlem2.3 𝐶 ∈ ω
omopthlem2.4 𝐷 ∈ ω
Assertion omopthlem2 ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 omopthlem2.1 𝐴 ∈ ω
2 omopthlem2.2 𝐵 ∈ ω
3 omopthlem2.3 𝐶 ∈ ω
4 omopthlem2.4 𝐷 ∈ ω
5 3 3 nnmcli ( 𝐶 ·o 𝐶 ) ∈ ω
6 5 4 nnacli ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ω
7 6 nnoni ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ On
8 7 onirri ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 )
9 eleq1 ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) → ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ↔ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) ) )
10 8 9 mtbii ( ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) → ¬ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) )
11 nnaword1 ( ( ( 𝐶 ·o 𝐶 ) ∈ ω ∧ 𝐷 ∈ ω ) → ( 𝐶 ·o 𝐶 ) ⊆ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) )
12 5 4 11 mp2an ( 𝐶 ·o 𝐶 ) ⊆ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 )
13 1 2 nnacli ( 𝐴 +o 𝐵 ) ∈ ω
14 13 1 nnacli ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω
15 nnaword1 ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω ) → 𝐵 ⊆ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) )
16 2 14 15 mp2an 𝐵 ⊆ ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) )
17 nnacom ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ∈ ω ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) = ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) )
18 2 14 17 mp2an ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) ) = ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 )
19 16 18 sseqtri 𝐵 ⊆ ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 )
20 nnaass ( ( ( 𝐴 +o 𝐵 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) )
21 13 1 2 20 mp3an ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) )
22 nnm2 ( ( 𝐴 +o 𝐵 ) ∈ ω → ( ( 𝐴 +o 𝐵 ) ·o 2o ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) ) )
23 13 22 ax-mp ( ( 𝐴 +o 𝐵 ) ·o 2o ) = ( ( 𝐴 +o 𝐵 ) +o ( 𝐴 +o 𝐵 ) )
24 21 23 eqtr4i ( ( ( 𝐴 +o 𝐵 ) +o 𝐴 ) +o 𝐵 ) = ( ( 𝐴 +o 𝐵 ) ·o 2o )
25 19 24 sseqtri 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o )
26 2onn 2o ∈ ω
27 13 26 nnmcli ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω
28 13 13 nnmcli ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω
29 nnawordi ( ( 𝐵 ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ) → ( 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ) )
30 2 27 28 29 mp3an ( 𝐵 ⊆ ( ( 𝐴 +o 𝐵 ) ·o 2o ) → ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) )
31 25 30 ax-mp ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) )
32 nnacom ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) )
33 28 2 32 mp2an ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) = ( 𝐵 +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) )
34 nnacom ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ∈ ω ∧ ( ( 𝐴 +o 𝐵 ) ·o 2o ) ∈ ω ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) = ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) ) )
35 28 27 34 mp2an ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) = ( ( ( 𝐴 +o 𝐵 ) ·o 2o ) +o ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) )
36 31 33 35 3sstr4i ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) )
37 13 3 omopthlem1 ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) )
38 28 2 nnacli ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ω
39 38 nnoni ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ On
40 5 nnoni ( 𝐶 ·o 𝐶 ) ∈ On
41 ontr2 ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ On ∧ ( 𝐶 ·o 𝐶 ) ∈ On ) → ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∧ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) ) )
42 39 40 41 mp2an ( ( ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ⊆ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∧ ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o ( ( 𝐴 +o 𝐵 ) ·o 2o ) ) ∈ ( 𝐶 ·o 𝐶 ) ) → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) )
43 36 37 42 sylancr ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( 𝐶 ·o 𝐶 ) )
44 12 43 sselid ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) ∈ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) )
45 10 44 nsyl3 ( ( 𝐴 +o 𝐵 ) ∈ 𝐶 → ¬ ( ( 𝐶 ·o 𝐶 ) +o 𝐷 ) = ( ( ( 𝐴 +o 𝐵 ) ·o ( 𝐴 +o 𝐵 ) ) +o 𝐵 ) )