Metamath Proof Explorer


Theorem omord

Description: Ordering property of ordinal multiplication. Proposition 8.19 of TakeutiZaring p. 63. (Contributed by NM, 14-Dec-2004)

Ref Expression
Assertion omord ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 omord2 ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) )
2 1 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐴𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) )
3 2 pm5.32rd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ) )
4 simpl ( ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) )
5 ne0i ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( 𝐶 ·o 𝐵 ) ≠ ∅ )
6 om0r ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ )
7 oveq1 ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) )
8 7 eqeq1d ( 𝐶 = ∅ → ( ( 𝐶 ·o 𝐵 ) = ∅ ↔ ( ∅ ·o 𝐵 ) = ∅ ) )
9 6 8 syl5ibrcom ( 𝐵 ∈ On → ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ∅ ) )
10 9 necon3d ( 𝐵 ∈ On → ( ( 𝐶 ·o 𝐵 ) ≠ ∅ → 𝐶 ≠ ∅ ) )
11 5 10 syl5 ( 𝐵 ∈ On → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) )
12 11 adantr ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) )
13 on0eln0 ( 𝐶 ∈ On → ( ∅ ∈ 𝐶𝐶 ≠ ∅ ) )
14 13 adantl ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶𝐶 ≠ ∅ ) )
15 12 14 sylibrd ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) )
16 15 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) )
17 16 ancld ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ) )
18 4 17 impbid2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) )
19 3 18 bitrd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) )