| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omord2 | ⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  ∧  ∅  ∈  𝐶 )  →  ( 𝐴  ∈  𝐵  ↔  ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 ) ) ) | 
						
							| 2 | 1 | ex | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  𝐶  →  ( 𝐴  ∈  𝐵  ↔  ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 ) ) ) ) | 
						
							| 3 | 2 | pm5.32rd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐴  ∈  𝐵  ∧  ∅  ∈  𝐶 )  ↔  ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  ∧  ∅  ∈  𝐶 ) ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  ∧  ∅  ∈  𝐶 )  →  ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 ) ) | 
						
							| 5 |  | ne0i | ⊢ ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  →  ( 𝐶  ·o  𝐵 )  ≠  ∅ ) | 
						
							| 6 |  | om0r | ⊢ ( 𝐵  ∈  On  →  ( ∅  ·o  𝐵 )  =  ∅ ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝐶  =  ∅  →  ( 𝐶  ·o  𝐵 )  =  ( ∅  ·o  𝐵 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝐶  =  ∅  →  ( ( 𝐶  ·o  𝐵 )  =  ∅  ↔  ( ∅  ·o  𝐵 )  =  ∅ ) ) | 
						
							| 9 | 6 8 | syl5ibrcom | ⊢ ( 𝐵  ∈  On  →  ( 𝐶  =  ∅  →  ( 𝐶  ·o  𝐵 )  =  ∅ ) ) | 
						
							| 10 | 9 | necon3d | ⊢ ( 𝐵  ∈  On  →  ( ( 𝐶  ·o  𝐵 )  ≠  ∅  →  𝐶  ≠  ∅ ) ) | 
						
							| 11 | 5 10 | syl5 | ⊢ ( 𝐵  ∈  On  →  ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  →  𝐶  ≠  ∅ ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  →  𝐶  ≠  ∅ ) ) | 
						
							| 13 |  | on0eln0 | ⊢ ( 𝐶  ∈  On  →  ( ∅  ∈  𝐶  ↔  𝐶  ≠  ∅ ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ∅  ∈  𝐶  ↔  𝐶  ≠  ∅ ) ) | 
						
							| 15 | 12 14 | sylibrd | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  →  ∅  ∈  𝐶 ) ) | 
						
							| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  →  ∅  ∈  𝐶 ) ) | 
						
							| 17 | 16 | ancld | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  →  ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  ∧  ∅  ∈  𝐶 ) ) ) | 
						
							| 18 | 4 17 | impbid2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 )  ∧  ∅  ∈  𝐶 )  ↔  ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 ) ) ) | 
						
							| 19 | 3 18 | bitrd | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐴  ∈  𝐵  ∧  ∅  ∈  𝐶 )  ↔  ( 𝐶  ·o  𝐴 )  ∈  ( 𝐶  ·o  𝐵 ) ) ) |