Step |
Hyp |
Ref |
Expression |
1 |
|
omord2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
2 |
1
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
3 |
2
|
pm5.32rd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ) ) |
4 |
|
simpl |
⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) |
5 |
|
ne0i |
⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( 𝐶 ·o 𝐵 ) ≠ ∅ ) |
6 |
|
om0r |
⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) |
7 |
|
oveq1 |
⊢ ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝐶 = ∅ → ( ( 𝐶 ·o 𝐵 ) = ∅ ↔ ( ∅ ·o 𝐵 ) = ∅ ) ) |
9 |
6 8
|
syl5ibrcom |
⊢ ( 𝐵 ∈ On → ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ∅ ) ) |
10 |
9
|
necon3d |
⊢ ( 𝐵 ∈ On → ( ( 𝐶 ·o 𝐵 ) ≠ ∅ → 𝐶 ≠ ∅ ) ) |
11 |
5 10
|
syl5 |
⊢ ( 𝐵 ∈ On → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
13 |
|
on0eln0 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
15 |
12 14
|
sylibrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
17 |
16
|
ancld |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ) ) |
18 |
4 17
|
impbid2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
19 |
3 18
|
bitrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |