| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
| 2 |
1
|
ex |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ On ) ) |
| 3 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅ ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o ∅ ) ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
| 6 |
3 5
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) ) |
| 7 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝑦 ) ) |
| 9 |
8
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) |
| 10 |
7 9
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) |
| 11 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦 ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o suc 𝑦 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) |
| 15 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝐵 ) ) |
| 17 |
16
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 18 |
15 17
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 19 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
| 20 |
19
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) |
| 21 |
20
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
| 22 |
|
elsuci |
⊢ ( 𝐴 ∈ suc 𝑦 → ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) |
| 23 |
|
omcl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ·o 𝑦 ) ∈ On ) |
| 24 |
|
simpl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → 𝐶 ∈ On ) |
| 25 |
23 24
|
jca |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ) |
| 26 |
|
oaword1 |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ·o 𝑦 ) ⊆ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
| 27 |
26
|
sseld |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 28 |
27
|
imim2d |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) ) |
| 29 |
28
|
imp |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 30 |
29
|
adantrl |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 31 |
|
oaord1 |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 32 |
31
|
biimpa |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝑦 ) ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝐴 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 35 |
32 34
|
syl5ibrcom |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 36 |
35
|
adantrr |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 37 |
30 36
|
jaod |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 38 |
25 37
|
sylan |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 39 |
22 38
|
syl5 |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 40 |
|
omsuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ·o suc 𝑦 ) = ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
| 41 |
40
|
eleq2d |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 43 |
39 42
|
sylibrd |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
| 44 |
43
|
exp43 |
⊢ ( 𝐶 ∈ On → ( 𝑦 ∈ On → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 45 |
44
|
com12 |
⊢ ( 𝑦 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 46 |
45
|
adantld |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 47 |
46
|
impd |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) |
| 48 |
|
id |
⊢ ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) → ( 𝐶 ∈ On ∧ Lim 𝑥 ) ) |
| 49 |
48
|
ad2ant2r |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) → ( 𝐶 ∈ On ∧ Lim 𝑥 ) ) |
| 50 |
|
limsuc |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) |
| 51 |
50
|
biimpa |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → suc 𝐴 ∈ 𝑥 ) |
| 52 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝐴 → ( 𝐶 ·o 𝑦 ) = ( 𝐶 ·o suc 𝐴 ) ) |
| 53 |
52
|
ssiun2s |
⊢ ( suc 𝐴 ∈ 𝑥 → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 54 |
51 53
|
syl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 55 |
54
|
adantll |
⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 56 |
|
vex |
⊢ 𝑥 ∈ V |
| 57 |
|
omlim |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 58 |
56 57
|
mpanr1 |
⊢ ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
| 60 |
55 59
|
sseqtrrd |
⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝑥 ) ) |
| 61 |
49 60
|
sylan |
⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝑥 ) ) |
| 62 |
|
omcl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ·o 𝐴 ) ∈ On ) |
| 63 |
|
oaord1 |
⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
| 64 |
62 63
|
sylan |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
| 65 |
64
|
anabss1 |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
| 66 |
65
|
biimpa |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
| 67 |
|
omsuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ·o suc 𝐴 ) = ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o suc 𝐴 ) = ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
| 69 |
66 68
|
eleqtrrd |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
| 70 |
69
|
adantrl |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
| 72 |
61 71
|
sseldd |
⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) |
| 73 |
72
|
exp53 |
⊢ ( 𝐶 ∈ On → ( 𝐴 ∈ On → ( Lim 𝑥 → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) ) |
| 74 |
73
|
com13 |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) ) |
| 75 |
74
|
imp4c |
⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) |
| 76 |
75
|
a1dd |
⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) |
| 77 |
6 10 14 18 21 47 76
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 78 |
77
|
com23 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 79 |
78
|
exp4a |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 80 |
79
|
exp4a |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) ) |
| 81 |
2 80
|
mpdd |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 82 |
81
|
com34 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ∅ ∈ 𝐶 → ( 𝐶 ∈ On → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 83 |
82
|
com24 |
⊢ ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 84 |
83
|
imp31 |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |