Step |
Hyp |
Ref |
Expression |
1 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ On ) |
2 |
1
|
ex |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ On ) ) |
3 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅ ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o ∅ ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
6 |
3 5
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) ) |
7 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝑦 ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) |
11 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o suc 𝑦 ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
14 |
11 13
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) |
15 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝐵 ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
18 |
15 17
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
19 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
20 |
19
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) |
21 |
20
|
a1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
22 |
|
elsuci |
⊢ ( 𝐴 ∈ suc 𝑦 → ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) |
23 |
|
omcl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ·o 𝑦 ) ∈ On ) |
24 |
|
simpl |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → 𝐶 ∈ On ) |
25 |
23 24
|
jca |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ) |
26 |
|
oaword1 |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ·o 𝑦 ) ⊆ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
27 |
26
|
sseld |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
28 |
27
|
imim2d |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) ) |
29 |
28
|
imp |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
30 |
29
|
adantrl |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
31 |
|
oaord1 |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
32 |
31
|
biimpa |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
33 |
|
oveq2 |
⊢ ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝑦 ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝐴 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
35 |
32 34
|
syl5ibrcom |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
36 |
35
|
adantrr |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
37 |
30 36
|
jaod |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
38 |
25 37
|
sylan |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
39 |
22 38
|
syl5 |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
40 |
|
omsuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ·o suc 𝑦 ) = ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
41 |
40
|
eleq2d |
⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
43 |
39 42
|
sylibrd |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
44 |
43
|
exp43 |
⊢ ( 𝐶 ∈ On → ( 𝑦 ∈ On → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
45 |
44
|
com12 |
⊢ ( 𝑦 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
46 |
45
|
adantld |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
47 |
46
|
impd |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) |
48 |
|
id |
⊢ ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) → ( 𝐶 ∈ On ∧ Lim 𝑥 ) ) |
49 |
48
|
ad2ant2r |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) → ( 𝐶 ∈ On ∧ Lim 𝑥 ) ) |
50 |
|
limsuc |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) |
51 |
50
|
biimpa |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → suc 𝐴 ∈ 𝑥 ) |
52 |
|
oveq2 |
⊢ ( 𝑦 = suc 𝐴 → ( 𝐶 ·o 𝑦 ) = ( 𝐶 ·o suc 𝐴 ) ) |
53 |
52
|
ssiun2s |
⊢ ( suc 𝐴 ∈ 𝑥 → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
54 |
51 53
|
syl |
⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
55 |
54
|
adantll |
⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
56 |
|
vex |
⊢ 𝑥 ∈ V |
57 |
|
omlim |
⊢ ( ( 𝐶 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
58 |
56 57
|
mpanr1 |
⊢ ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ·o 𝑦 ) ) |
60 |
55 59
|
sseqtrrd |
⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝑥 ) ) |
61 |
49 60
|
sylan |
⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o suc 𝐴 ) ⊆ ( 𝐶 ·o 𝑥 ) ) |
62 |
|
omcl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ·o 𝐴 ) ∈ On ) |
63 |
|
oaord1 |
⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
64 |
62 63
|
sylan |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
65 |
64
|
anabss1 |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) ) |
66 |
65
|
biimpa |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
67 |
|
omsuc |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ·o suc 𝐴 ) = ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o suc 𝐴 ) = ( ( 𝐶 ·o 𝐴 ) +o 𝐶 ) ) |
69 |
66 68
|
eleqtrrd |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
70 |
69
|
adantrl |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
71 |
70
|
adantr |
⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝐴 ) ) |
72 |
61 71
|
sseldd |
⊢ ( ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐶 ) ) ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) |
73 |
72
|
exp53 |
⊢ ( 𝐶 ∈ On → ( 𝐴 ∈ On → ( Lim 𝑥 → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) ) |
74 |
73
|
com13 |
⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) ) |
75 |
74
|
imp4c |
⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) |
76 |
75
|
a1dd |
⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) ) |
77 |
6 10 14 18 21 47 76
|
tfinds3 |
⊢ ( 𝐵 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
78 |
77
|
com23 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
79 |
78
|
exp4a |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
80 |
79
|
exp4a |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) ) |
81 |
2 80
|
mpdd |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
82 |
81
|
com34 |
⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ∅ ∈ 𝐶 → ( 𝐶 ∈ On → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
83 |
82
|
com24 |
⊢ ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
84 |
83
|
imp31 |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |