Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omordlim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐷 ∧ Lim 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omlim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐷 ∧ Lim 𝐵 ) ) → ( 𝐴 ·o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐷 ∧ Lim 𝐵 ) ) → ( 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ↔ 𝐶 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ) ) | 
| 3 | eliun | ⊢ ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ·o 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) ) | |
| 4 | 2 3 | bitrdi | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐷 ∧ Lim 𝐵 ) ) → ( 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) ) ) | 
| 5 | 4 | biimpa | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐷 ∧ Lim 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃ 𝑥 ∈ 𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) ) |