Metamath Proof Explorer


Theorem omordlim

Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)

Ref Expression
Assertion omordlim ( ( ( 𝐴 ∈ On ∧ ( 𝐵𝐷 ∧ Lim 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃ 𝑥𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) )

Proof

Step Hyp Ref Expression
1 omlim ( ( 𝐴 ∈ On ∧ ( 𝐵𝐷 ∧ Lim 𝐵 ) ) → ( 𝐴 ·o 𝐵 ) = 𝑥𝐵 ( 𝐴 ·o 𝑥 ) )
2 1 eleq2d ( ( 𝐴 ∈ On ∧ ( 𝐵𝐷 ∧ Lim 𝐵 ) ) → ( 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ↔ 𝐶 𝑥𝐵 ( 𝐴 ·o 𝑥 ) ) )
3 eliun ( 𝐶 𝑥𝐵 ( 𝐴 ·o 𝑥 ) ↔ ∃ 𝑥𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) )
4 2 3 bitrdi ( ( 𝐴 ∈ On ∧ ( 𝐵𝐷 ∧ Lim 𝐵 ) ) → ( 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ↔ ∃ 𝑥𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) ) )
5 4 biimpa ( ( ( 𝐴 ∈ On ∧ ( 𝐵𝐷 ∧ Lim 𝐵 ) ) ∧ 𝐶 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃ 𝑥𝐵 𝐶 ∈ ( 𝐴 ·o 𝑥 ) )