Step |
Hyp |
Ref |
Expression |
1 |
|
omsinds.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
omsinds.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
omsinds.3 |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) |
4 |
|
omsson |
⊢ ω ⊆ On |
5 |
|
epweon |
⊢ E We On |
6 |
|
wess |
⊢ ( ω ⊆ On → ( E We On → E We ω ) ) |
7 |
4 5 6
|
mp2 |
⊢ E We ω |
8 |
|
epse |
⊢ E Se ω |
9 |
|
trom |
⊢ Tr ω |
10 |
|
trpred |
⊢ ( ( Tr ω ∧ 𝑥 ∈ ω ) → Pred ( E , ω , 𝑥 ) = 𝑥 ) |
11 |
9 10
|
mpan |
⊢ ( 𝑥 ∈ ω → Pred ( E , ω , 𝑥 ) = 𝑥 ) |
12 |
11
|
raleqdv |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓 ↔ ∀ 𝑦 ∈ 𝑥 𝜓 ) ) |
13 |
12 3
|
sylbid |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓 → 𝜑 ) ) |
14 |
7 8 1 2 13
|
wfis3 |
⊢ ( 𝐴 ∈ ω → 𝜒 ) |