Metamath Proof Explorer


Theorem omsinds

Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Hypotheses omsinds.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
omsinds.2 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
omsinds.3 ( 𝑥 ∈ ω → ( ∀ 𝑦𝑥 𝜓𝜑 ) )
Assertion omsinds ( 𝐴 ∈ ω → 𝜒 )

Proof

Step Hyp Ref Expression
1 omsinds.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 omsinds.2 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
3 omsinds.3 ( 𝑥 ∈ ω → ( ∀ 𝑦𝑥 𝜓𝜑 ) )
4 omsson ω ⊆ On
5 epweon E We On
6 wess ( ω ⊆ On → ( E We On → E We ω ) )
7 4 5 6 mp2 E We ω
8 epse E Se ω
9 trom Tr ω
10 trpred ( ( Tr ω ∧ 𝑥 ∈ ω ) → Pred ( E , ω , 𝑥 ) = 𝑥 )
11 9 10 mpan ( 𝑥 ∈ ω → Pred ( E , ω , 𝑥 ) = 𝑥 )
12 11 raleqdv ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓 ↔ ∀ 𝑦𝑥 𝜓 ) )
13 12 3 sylbid ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓𝜑 ) )
14 7 8 1 2 13 wfis3 ( 𝐴 ∈ ω → 𝜒 )