Step |
Hyp |
Ref |
Expression |
1 |
|
omsinds.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
omsinds.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
omsinds.3 |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) |
4 |
|
omsson |
⊢ ω ⊆ On |
5 |
|
epweon |
⊢ E We On |
6 |
|
wess |
⊢ ( ω ⊆ On → ( E We On → E We ω ) ) |
7 |
4 5 6
|
mp2 |
⊢ E We ω |
8 |
|
epse |
⊢ E Se ω |
9 |
|
predep |
⊢ ( 𝑥 ∈ ω → Pred ( E , ω , 𝑥 ) = ( ω ∩ 𝑥 ) ) |
10 |
|
ordom |
⊢ Ord ω |
11 |
|
ordtr |
⊢ ( Ord ω → Tr ω ) |
12 |
|
trss |
⊢ ( Tr ω → ( 𝑥 ∈ ω → 𝑥 ⊆ ω ) ) |
13 |
10 11 12
|
mp2b |
⊢ ( 𝑥 ∈ ω → 𝑥 ⊆ ω ) |
14 |
|
sseqin2 |
⊢ ( 𝑥 ⊆ ω ↔ ( ω ∩ 𝑥 ) = 𝑥 ) |
15 |
13 14
|
sylib |
⊢ ( 𝑥 ∈ ω → ( ω ∩ 𝑥 ) = 𝑥 ) |
16 |
9 15
|
eqtrd |
⊢ ( 𝑥 ∈ ω → Pred ( E , ω , 𝑥 ) = 𝑥 ) |
17 |
16
|
raleqdv |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓 ↔ ∀ 𝑦 ∈ 𝑥 𝜓 ) ) |
18 |
17 3
|
sylbid |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓 → 𝜑 ) ) |
19 |
7 8 1 2 18
|
wfis3 |
⊢ ( 𝐴 ∈ ω → 𝜒 ) |