Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → 𝐹 : ω ⟶ 𝐴 ) |
2 |
|
omsmolem |
⊢ ( 𝑧 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑦 ∈ 𝑧 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑦 ∈ 𝑧 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) ) |
4 |
3
|
imp |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ∧ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ) → ( 𝑦 ∈ 𝑧 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
5 |
|
omsmolem |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
7 |
6
|
imp |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ∧ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
8 |
4 7
|
orim12d |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ∧ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
9 |
8
|
ancoms |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
10 |
9
|
con3d |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) → ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
11 |
|
ffvelrn |
⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 ) |
12 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) |
13 |
11 12
|
syl5 |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) |
14 |
13
|
expdimp |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑦 ∈ ω → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) |
15 |
|
eloni |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ On → Ord ( 𝐹 ‘ 𝑦 ) ) |
16 |
14 15
|
syl6 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑦 ∈ ω → Ord ( 𝐹 ‘ 𝑦 ) ) ) |
17 |
|
ffvelrn |
⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) |
18 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
19 |
17 18
|
syl5 |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
20 |
19
|
expdimp |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
21 |
|
eloni |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ On → Ord ( 𝐹 ‘ 𝑧 ) ) |
22 |
20 21
|
syl6 |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑧 ∈ ω → Ord ( 𝐹 ‘ 𝑧 ) ) ) |
23 |
16 22
|
anim12d |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( Ord ( 𝐹 ‘ 𝑦 ) ∧ Ord ( 𝐹 ‘ 𝑧 ) ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( Ord ( 𝐹 ‘ 𝑦 ) ∧ Ord ( 𝐹 ‘ 𝑧 ) ) ) |
25 |
|
ordtri3 |
⊢ ( ( Ord ( 𝐹 ‘ 𝑦 ) ∧ Ord ( 𝐹 ‘ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
27 |
26
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
28 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
29 |
|
nnord |
⊢ ( 𝑧 ∈ ω → Ord 𝑧 ) |
30 |
|
ordtri3 |
⊢ ( ( Ord 𝑦 ∧ Ord 𝑧 ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
31 |
28 29 30
|
syl2an |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
33 |
10 27 32
|
3imtr4d |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
34 |
33
|
ralrimivva |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
35 |
|
dff13 |
⊢ ( 𝐹 : ω –1-1→ 𝐴 ↔ ( 𝐹 : ω ⟶ 𝐴 ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
36 |
1 34 35
|
sylanbrc |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → 𝐹 : ω –1-1→ 𝐴 ) |