| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
⊢ ( 𝑦 = ∅ → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) |
| 3 |
2
|
eleq2d |
⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) |
| 4 |
1 3
|
imbi12d |
⊢ ( 𝑦 = ∅ → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) ) |
| 5 |
|
eleq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 7 |
6
|
eleq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 8 |
5 7
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 9 |
|
eleq2 |
⊢ ( 𝑦 = suc 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ suc 𝑤 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ suc 𝑤 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( 𝑦 = suc 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 12 |
9 11
|
imbi12d |
⊢ ( 𝑦 = suc 𝑤 → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 13 |
|
noel |
⊢ ¬ 𝑧 ∈ ∅ |
| 14 |
13
|
pm2.21i |
⊢ ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) |
| 15 |
14
|
a1i |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) |
| 16 |
|
vex |
⊢ 𝑧 ∈ V |
| 17 |
16
|
elsuc |
⊢ ( 𝑧 ∈ suc 𝑤 ↔ ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 19 |
|
suceq |
⊢ ( 𝑥 = 𝑤 → suc 𝑥 = suc 𝑤 ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑤 ) ) |
| 21 |
18 20
|
eleq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 22 |
21
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) |
| 23 |
22
|
adantll |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) |
| 24 |
|
peano2b |
⊢ ( 𝑤 ∈ ω ↔ suc 𝑤 ∈ ω ) |
| 25 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ suc 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 ) |
| 26 |
24 25
|
sylan2b |
⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 ) |
| 27 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑤 ) ∈ On ) ) |
| 28 |
|
ontr1 |
⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ On → ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 29 |
28
|
expcomd |
⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ On → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 30 |
26 27 29
|
syl56 |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
| 31 |
30
|
impl |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 32 |
31
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 33 |
23 32
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 34 |
33
|
imim2d |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
| 35 |
34
|
imp |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 38 |
22 37
|
syl5ibrcom |
⊢ ( ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ∧ 𝑤 ∈ ω ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 39 |
38
|
ad4ant23 |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 40 |
35 39
|
jaod |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 41 |
17 40
|
biimtrid |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
| 42 |
41
|
exp31 |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑤 ∈ ω → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
| 43 |
42
|
com12 |
⊢ ( 𝑤 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
| 44 |
4 8 12 15 43
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |