Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝑦 = ∅ → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
2 |
|
fveq2 |
⊢ ( 𝑦 = ∅ → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ∅ ) ) |
3 |
2
|
eleq2d |
⊢ ( 𝑦 = ∅ → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) |
4 |
1 3
|
imbi12d |
⊢ ( 𝑦 = ∅ → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) ) |
5 |
|
eleq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
8 |
5 7
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) ) |
9 |
|
eleq2 |
⊢ ( 𝑦 = suc 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ suc 𝑤 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = suc 𝑤 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ suc 𝑤 ) ) |
11 |
10
|
eleq2d |
⊢ ( 𝑦 = suc 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑦 = suc 𝑤 → ( ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
13 |
|
noel |
⊢ ¬ 𝑧 ∈ ∅ |
14 |
13
|
pm2.21i |
⊢ ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) |
15 |
14
|
a1i |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ ∅ ) ) ) |
16 |
|
vex |
⊢ 𝑧 ∈ V |
17 |
16
|
elsuc |
⊢ ( 𝑧 ∈ suc 𝑤 ↔ ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
19 |
|
suceq |
⊢ ( 𝑥 = 𝑤 → suc 𝑥 = suc 𝑤 ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑤 ) ) |
21 |
18 20
|
eleq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
22 |
21
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) |
23 |
22
|
adantll |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) |
24 |
|
peano2b |
⊢ ( 𝑤 ∈ ω ↔ suc 𝑤 ∈ ω ) |
25 |
|
ffvelrn |
⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ suc 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 ) |
26 |
24 25
|
sylan2b |
⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑤 ∈ ω ) → ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 ) |
27 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ suc 𝑤 ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑤 ) ∈ On ) ) |
28 |
|
ontr1 |
⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ On → ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
29 |
28
|
expcomd |
⊢ ( ( 𝐹 ‘ suc 𝑤 ) ∈ On → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
30 |
26 27 29
|
syl56 |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
31 |
30
|
impl |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
32 |
31
|
adantlr |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
33 |
23 32
|
mpd |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
34 |
33
|
imim2d |
⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) |
35 |
34
|
imp |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
38 |
22 37
|
syl5ibrcom |
⊢ ( ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ∧ 𝑤 ∈ ω ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
39 |
38
|
ad4ant23 |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 = 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
40 |
35 39
|
jaod |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( ( 𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
41 |
17 40
|
syl5bi |
⊢ ( ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ 𝑤 ∈ ω ) ∧ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) |
42 |
41
|
exp31 |
⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑤 ∈ ω → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
43 |
42
|
com12 |
⊢ ( 𝑤 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 ∈ suc 𝑤 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑤 ) ) ) ) ) |
44 |
4 8 12 15 43
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |