Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 +o 𝑦 ) = ( 𝑥 +o 𝐴 ) ) |
2 |
1
|
mpteq2dv |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ) |
3 |
|
rdgeq1 |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑦 = 𝐴 → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ) |
5 |
4
|
fveq1d |
⊢ ( 𝑦 = 𝐴 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝑧 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
7 |
|
df-omul |
⊢ ·o = ( 𝑦 ∈ On , 𝑧 ∈ On ↦ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) ‘ 𝑧 ) ) |
8 |
|
fvex |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ∈ V |
9 |
5 6 7 8
|
ovmpo |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |