Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
2 |
|
ordgt0ge1 |
⊢ ( Ord 𝐵 → ( ∅ ∈ 𝐵 ↔ 1o ⊆ 𝐵 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 1o ⊆ 𝐵 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 1o ⊆ 𝐵 ) ) |
5 |
|
1on |
⊢ 1o ∈ On |
6 |
|
omwordi |
⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 1o ⊆ 𝐵 → ( 𝐴 ·o 1o ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
7 |
5 6
|
mp3an1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 1o ⊆ 𝐵 → ( 𝐴 ·o 1o ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ⊆ 𝐵 → ( 𝐴 ·o 1o ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
9 |
|
om1 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 1o ) = 𝐴 ) |
11 |
10
|
sseq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 1o ) ⊆ ( 𝐴 ·o 𝐵 ) ↔ 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
12 |
8 11
|
sylibd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ⊆ 𝐵 → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
13 |
4 12
|
sylbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → 𝐴 ⊆ ( 𝐴 ·o 𝐵 ) ) |