Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) |
3 |
1 2
|
sseq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o ∅ ) ⊆ ( 𝐵 ·o ∅ ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) |
6 |
4 5
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) |
9 |
7 8
|
sseq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐶 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐶 ) ) |
12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
13 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
14 |
|
0ss |
⊢ ∅ ⊆ ( 𝐵 ·o ∅ ) |
15 |
13 14
|
eqsstrdi |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) ⊆ ( 𝐵 ·o ∅ ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ·o ∅ ) ⊆ ( 𝐵 ·o ∅ ) ) |
17 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑦 ) ∈ On ) |
18 |
17
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑦 ) ∈ On ) |
19 |
|
omcl |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
21 |
|
simp1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → 𝐴 ∈ On ) |
22 |
|
oawordri |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) ) |
23 |
18 20 21 22
|
syl3anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) |
25 |
24
|
adantrl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ) |
26 |
|
oaword |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
27 |
20 26
|
syld3an3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
28 |
27
|
biimpa |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
29 |
28
|
adantrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐵 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
30 |
25 29
|
sstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ⊆ ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
31 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
32 |
31
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
34 |
|
omsuc |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
35 |
34
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) |
37 |
30 33 36
|
3sstr4d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) ) ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) |
38 |
37
|
exp520 |
⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
39 |
38
|
com3r |
⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) ) ) ) |
40 |
39
|
imp4c |
⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o suc 𝑦 ) ⊆ ( 𝐵 ·o suc 𝑦 ) ) ) ) |
41 |
|
vex |
⊢ 𝑥 ∈ V |
42 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) |
43 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ) |
44 |
43
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( 𝐴 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ) |
45 |
|
omlim |
⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) |
47 |
44 46
|
sseq12d |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) ) |
48 |
42 47
|
syl5ibr |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) |
49 |
48
|
anandirs |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) |
50 |
41 49
|
mpanr1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) |
51 |
50
|
expcom |
⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) ) |
52 |
51
|
adantrd |
⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o 𝑦 ) ⊆ ( 𝐵 ·o 𝑦 ) → ( 𝐴 ·o 𝑥 ) ⊆ ( 𝐵 ·o 𝑥 ) ) ) ) |
53 |
3 6 9 12 16 40 52
|
tfinds3 |
⊢ ( 𝐶 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
54 |
53
|
expd |
⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) ) |
55 |
54
|
3impib |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |
56 |
55
|
3coml |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐵 ·o 𝐶 ) ) ) |