Step |
Hyp |
Ref |
Expression |
1 |
|
xpcomeng |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) |
2 |
|
xpexg |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 × 𝐴 ) ∈ V ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 × 𝐴 ) ∈ V ) |
4 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) |
6 |
5
|
omxpenlem |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |
7 |
|
f1oen2g |
⊢ ( ( ( 𝐵 × 𝐴 ) ∈ V ∧ ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ·o 𝐵 ) ) |
8 |
3 4 6 7
|
syl3anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ·o 𝐵 ) ) |
9 |
|
entr |
⊢ ( ( ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ·o 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ·o 𝐵 ) ) |
10 |
1 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ·o 𝐵 ) ) |
11 |
10
|
ensymd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ≈ ( 𝐴 × 𝐵 ) ) |