Step |
Hyp |
Ref |
Expression |
1 |
|
omxpenlem.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) |
2 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
3 |
2
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → Ord 𝐵 ) |
4 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐵 ) |
5 |
|
ordsucss |
⊢ ( Ord 𝐵 → ( 𝑥 ∈ 𝐵 → suc 𝑥 ⊆ 𝐵 ) ) |
6 |
3 4 5
|
sylc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → suc 𝑥 ⊆ 𝐵 ) |
7 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
8 |
7
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ On ) |
9 |
|
suceloni |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
10 |
8 9
|
syl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → suc 𝑥 ∈ On ) |
11 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐵 ∈ On ) |
12 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐴 ∈ On ) |
13 |
|
omwordi |
⊢ ( ( suc 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( suc 𝑥 ⊆ 𝐵 → ( 𝐴 ·o suc 𝑥 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( suc 𝑥 ⊆ 𝐵 → ( 𝐴 ·o suc 𝑥 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
15 |
6 14
|
mpd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐴 ·o suc 𝑥 ) ⊆ ( 𝐴 ·o 𝐵 ) ) |
16 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
17 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
18 |
17
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ On ) |
19 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
20 |
12 8 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
21 |
|
oaord |
⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ On ∧ ( 𝐴 ·o 𝑥 ) ∈ On ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
22 |
18 12 20 21
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) ) |
23 |
16 22
|
mpbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
24 |
|
omsuc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
25 |
12 8 24
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐴 ·o suc 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝐴 ) ) |
26 |
23 25
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o suc 𝑥 ) ) |
27 |
15 26
|
sseldd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
28 |
27
|
ralrimivva |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
29 |
1
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ↔ 𝐹 : ( 𝐵 × 𝐴 ) ⟶ ( 𝐴 ·o 𝐵 ) ) |
30 |
28 29
|
sylib |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) ⟶ ( 𝐴 ·o 𝐵 ) ) |
31 |
30
|
ffnd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 Fn ( 𝐵 × 𝐴 ) ) |
32 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝐴 ∈ On ) |
33 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
34 |
|
onelon |
⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝑚 ∈ On ) |
35 |
33 34
|
sylan |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝑚 ∈ On ) |
36 |
|
noel |
⊢ ¬ 𝑚 ∈ ∅ |
37 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) |
38 |
|
om0r |
⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) |
39 |
37 38
|
sylan9eqr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ·o 𝐵 ) = ∅ ) |
40 |
39
|
eleq2d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ↔ 𝑚 ∈ ∅ ) ) |
41 |
36 40
|
mtbiri |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ¬ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) |
42 |
41
|
ex |
⊢ ( 𝐵 ∈ On → ( 𝐴 = ∅ → ¬ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) ) |
43 |
42
|
necon2ad |
⊢ ( 𝐵 ∈ On → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) → 𝐴 ≠ ∅ ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) → 𝐴 ≠ ∅ ) ) |
45 |
44
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → 𝐴 ≠ ∅ ) |
46 |
|
omeu |
⊢ ( ( 𝐴 ∈ On ∧ 𝑚 ∈ On ∧ 𝐴 ≠ ∅ ) → ∃! 𝑛 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) |
47 |
32 35 45 46
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃! 𝑛 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) |
48 |
|
vex |
⊢ 𝑚 ∈ V |
49 |
|
vex |
⊢ 𝑛 ∈ V |
50 |
48 49
|
brcnv |
⊢ ( 𝑚 ◡ 𝐹 𝑛 ↔ 𝑛 𝐹 𝑚 ) |
51 |
|
eleq1 |
⊢ ( 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) → ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
52 |
51
|
biimpac |
⊢ ( ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
53 |
7
|
ex |
⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
55 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝐴 ∈ On ) |
56 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) |
57 |
55 56 19
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ On ) |
58 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑦 ∈ 𝐴 ) |
59 |
55 58 17
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑦 ∈ On ) |
60 |
|
oaword1 |
⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) |
61 |
57 59 60
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) |
62 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
63 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
64 |
|
ontr2 |
⊢ ( ( ( 𝐴 ·o 𝑥 ) ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( ( ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
65 |
57 63 64
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ( ( 𝐴 ·o 𝑥 ) ⊆ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
66 |
61 62 65
|
mp2and |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) |
67 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝐵 ∈ On ) |
68 |
62
|
ne0d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o 𝐵 ) ≠ ∅ ) |
69 |
|
on0eln0 |
⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
70 |
63 69
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐴 ·o 𝐵 ) ≠ ∅ ) ) |
71 |
68 70
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ∅ ∈ ( 𝐴 ·o 𝐵 ) ) |
72 |
|
om00el |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) ) |
73 |
72
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝐵 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) ) |
74 |
71 73
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵 ) ) |
75 |
74
|
simpld |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ∅ ∈ 𝐴 ) |
76 |
|
omord2 |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
77 |
56 67 55 75 76
|
syl31anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝐴 ·o 𝑥 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
78 |
66 77
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ 𝐵 ) |
79 |
78
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ On → 𝑥 ∈ 𝐵 ) ) |
80 |
54 79
|
impbid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ On ) ) |
81 |
80
|
expr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ On ) ) ) |
82 |
81
|
pm5.32rd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) ) |
83 |
52 82
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) ) |
84 |
83
|
expr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) ) ) |
85 |
84
|
pm5.32rd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ) |
86 |
|
eqcom |
⊢ ( 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ↔ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) |
87 |
86
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) |
88 |
85 87
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
89 |
88
|
anbi2d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ↔ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) ) |
90 |
|
an12 |
⊢ ( ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
91 |
89 90
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) ) |
92 |
91
|
2exbidv |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) ) |
93 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐴 ↦ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) } |
94 |
|
dfoprab2 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) } = { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } |
95 |
1 93 94
|
3eqtri |
⊢ 𝐹 = { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } |
96 |
95
|
breqi |
⊢ ( 𝑛 𝐹 𝑚 ↔ 𝑛 { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } 𝑚 ) |
97 |
|
df-br |
⊢ ( 𝑛 { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } 𝑚 ↔ 〈 𝑛 , 𝑚 〉 ∈ { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } ) |
98 |
|
opabidw |
⊢ ( 〈 𝑛 , 𝑚 〉 ∈ { 〈 𝑛 , 𝑚 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ) |
99 |
96 97 98
|
3bitri |
⊢ ( 𝑛 𝐹 𝑚 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑚 = ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) ) ) ) |
100 |
|
r2ex |
⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
101 |
92 99 100
|
3bitr4g |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑛 𝐹 𝑚 ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
102 |
50 101
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( 𝑚 ◡ 𝐹 𝑛 ↔ ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
103 |
102
|
eubidv |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ( ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ↔ ∃! 𝑛 ∃ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 ( 𝑛 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝐴 ·o 𝑥 ) +o 𝑦 ) = 𝑚 ) ) ) |
104 |
47 103
|
mpbird |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ) → ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ) |
105 |
104
|
ralrimiva |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∀ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ) |
106 |
|
fnres |
⊢ ( ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) Fn ( 𝐴 ·o 𝐵 ) ↔ ∀ 𝑚 ∈ ( 𝐴 ·o 𝐵 ) ∃! 𝑛 𝑚 ◡ 𝐹 𝑛 ) |
107 |
105 106
|
sylibr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) Fn ( 𝐴 ·o 𝐵 ) ) |
108 |
|
relcnv |
⊢ Rel ◡ 𝐹 |
109 |
|
df-rn |
⊢ ran 𝐹 = dom ◡ 𝐹 |
110 |
30
|
frnd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ran 𝐹 ⊆ ( 𝐴 ·o 𝐵 ) ) |
111 |
109 110
|
eqsstrrid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → dom ◡ 𝐹 ⊆ ( 𝐴 ·o 𝐵 ) ) |
112 |
|
relssres |
⊢ ( ( Rel ◡ 𝐹 ∧ dom ◡ 𝐹 ⊆ ( 𝐴 ·o 𝐵 ) ) → ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) = ◡ 𝐹 ) |
113 |
108 111 112
|
sylancr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) = ◡ 𝐹 ) |
114 |
113
|
fneq1d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ◡ 𝐹 ↾ ( 𝐴 ·o 𝐵 ) ) Fn ( 𝐴 ·o 𝐵 ) ↔ ◡ 𝐹 Fn ( 𝐴 ·o 𝐵 ) ) ) |
115 |
107 114
|
mpbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ◡ 𝐹 Fn ( 𝐴 ·o 𝐵 ) ) |
116 |
|
dff1o4 |
⊢ ( 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ↔ ( 𝐹 Fn ( 𝐵 × 𝐴 ) ∧ ◡ 𝐹 Fn ( 𝐴 ·o 𝐵 ) ) ) |
117 |
31 115 116
|
sylanbrc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 ·o 𝐵 ) ) |