Metamath Proof Explorer


Theorem on0eln0

Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004)

Ref Expression
Assertion on0eln0 ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐴 ∈ On → Ord 𝐴 )
2 ord0eln0 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
3 1 2 syl ( 𝐴 ∈ On → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )